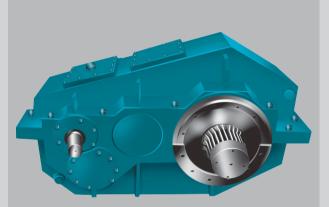
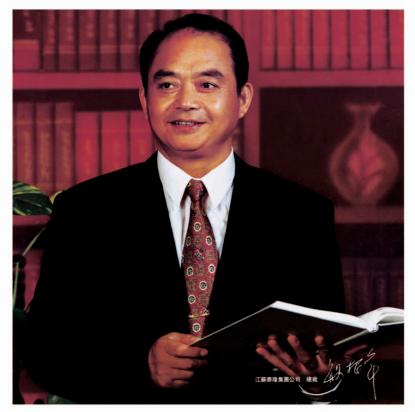
T A I L O N G

地址(ADD): 江苏省泰兴市大庆东路88号 NO.88,Daqing Rd.(E) Taixing City,jiangsu province 电话(TEL):0086-523-87635698 87668018 87668028 传真(FAX):0086-523-87665426 87665000 邮编(P.C):225400

网址 Http://www.tailong.com 电子信箱E-mail:tloffice@126.com



2009版


中国名牌产品 CHINA TOP BRAND
 中国驰名商标 CHINA WELL-KNOWN TRADEMARK
 国家大型企业 NATIONAL LARGE ENTERPRISE

起重机用硬齿面减速器

江 苏 泰 隆 机 械 集 团 JIANGSU TAILONG MACHINERY GROUP COMPANY 江苏泰隆减速机股份有限公司 JIANGSU TAILONG DECELERATOR MACHINERY CO.,LTD.

公司简介

泰隆集团地处扬子江畔的泰兴市区, 是泰兴人引以为豪的国家大型 企业。集团在全国优秀企业家、江苏省劳动模范董事长殷根章的领导下, 经过20多年的悉心经营,昂首迈进了中国机械工业500强,成为全国减 变行业龙头老大。

集团现拥有总资产 5.8 亿元,固定资产 3.6 亿元,占地面积 60 万平 方米,员工近2612人,专业工程技术人员896人,年销售额15亿元。从 美国、德国、日本、俄罗斯等国家引进的大型数控磨齿机、蜗杆磨床、 加工中心、碳氮共渗炉等一批高精尖的生产设备和检测设备占48%。建 立了全国同行业中检测功能最全、检测功率最大、仪器最先进的测试中 心,创建了省级工程技术中心。公司产品在原有的平面二次包络蜗杆减 速器、9000系列摆线针轮减速机、圆柱齿轮减速器、行星齿轮减速器等 十几个系列,几十万种规格的基础上,采用先进的模块化、点线等技术 开发出了TL模块化齿轮减速电机; TPB 行星模块化减速器、重载模块 式减速器、点线啮合减速器。多年来,起重机用硬齿面、中硬齿面减速 器一直在为用户提供最佳的传动方案,在风力发电、水力发电领域捷足 先登,做出了不菲的业绩。重载齿轮箱在建材行业、冶金行业成功得到 了应用,开发出了建材行业的立式磨机及边缘传动磨机齿轮箱,冶金行 业的开卷、卷取齿轮箱、三环减速器、星轮减速器。另外公司还为用户 提供榨糖机齿轮箱、螺杆升降机、电动滚筒及各类非标齿轮箱。公司荣 获"中国名牌","全国首批守合同重信用企业","全国重点高新技术企 业"、"全国机械工业质量效益型先进企业"、"全国机械工业质量管理 奖"、"全国用户满意服务"等殊誉,泰隆商标被评为"中国驰名商标", 在同行业中率先通过质量、环境、安全三位一体认证及ISO10012计量体 系确认。

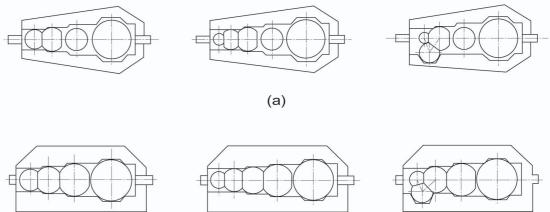
泰隆人将遵循自己一贯的质量承诺、服务承诺和信誉承诺、把顾客 满意当作我们的最高追求!

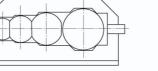
Company Brief

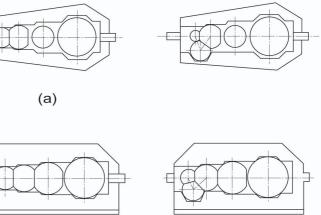
Tailong Group is located in Taixing urban area at the border of Yangtse River and it is a state-owned large-sized enterprise boasted by Taixing people. Under the leadership of Mr. Yin genzhang, a nationwide excellent entrepreneur and a model worker of Jiangsu Province, after more than twenty years of operation with concentrated efforts, has proudly marched into the Top 500 enterprises in Chinese Mechanical Industry and has become the industry leader.

At present, the group owns a total assets of RMB 580m, and fixed of RMB 360m, and it covers an area of 600,000 square meters and owns almost 2,612 employees, including 896 technicians, the annual turnover surpasses 1b RMB. The introduced large-sized numerical controlled gear grinding machine, worm grinder, machining center and carbonitriding kiln and etc. advanced, precise and leading manufacturing facilities and inspection apparatus from USA, Germany, Japan and Russia has taken part 48% share in all. At the same time, the group has established a test center with the most complete test functions, the biggest test power, the most advanced instrument and the provincial science & technology park. At the basis of the primary secondary envelope, 9000 series cycloid pinwheel reducer, cylindrical gear, planetary reducer and so on, more than ten series, and several ten thousands specifications, adopting the advanced modularization, point-line technique, ultimately develop TL modular reducer, TPB planetary modular reducer, heavy load modular and point-line meshing decelerator. Along many years, harden-faced reducer for crane, moderate rigid reducer provide the best transmission project for customer all the times; On the other hand, at the wind and water power area, we have taken the swift-footed arrive first, and taken out outstanding success. The heavy load gearboxes has successfully applied in architecture, metallurgy industry, and developed vertical grinder, marginal transmission grinder gearbox which fit for architecture industry, open, convolute gearbox, three-ring, star reducer which special for metallurgy. In addition, the company also supply sugar mill gearbox, worm lifter, electrical roller and various non-standard gearboxes.

The company has been awarded successively with such honorable titles as"China top brand", "National first batch of enterprise honoring contracts and keeping promises", "National key new & hi-tech enterprise", "National mechanical industry quality & benefit type enterprise", "National mechanical industry QC award" and "National customer satisfaction service". Tailong brand is recognized as "the Chinese famous brand" by national industrial and commercial bureau. It has taken the lead in passing the quality, environment and security three in one system certification and ISO10012 metering system certification.


Tailong people will keep to its persistent quality guarantee, service guarantee and credit, satisfying customer as our topmost pursuit.


一、QY型起重机用硬齿面减速器


Hard tooth face decelerator for QY type hoist

1、减速器的分类、应用范围 Classification and application scope of decelerator QY 型系列减速器包括 QYS 型(三支点)和 QYD 型(底座式)两个系列起重机用硬齿面 减速器。它有三级、四级和三四级结合型三种,其结构简图见图 1。

QY series decelerator includes hard tooth face decelerator for type QYS (3-supportingpoint) and type QYD (pedestal type) hoists. It has 3-step, 4-step and 3 and 4 combined type, see figure 1 for structural diagram.

此减速器主要用于起重机各有关机构,也可用于运输、冶金、矿山、化工及轻工等机械设备的传动 中。其工作条件为:

- 1) 齿轮圆周速度不大于 20m/s;
- 2) 高速轴转速不大于 1500r/min:
- 3) 工作环境温度为 -40℃ ~ +45℃;
- 4) 可正反两向运转。

This decelerator is mainly used for each of related mechanism on the hoist, also for the transmission of mechanical equipment in transportation, metallurgy, mining, chemical industry, and light industry with working condition as follows:

- 1) Peripheral speed of the gear wheel does not exceed 20m/s;
- 2) Rotating speed of high speed shaft does not exceed 1500r/min;
- 3) Working ambient temperature is $-40^{\circ}C \sim +45^{\circ}C$;
- 4) Both forward and backward rotation are available.

(b)

图 1 QY 型减速器结构简图: (a) QYS 型; (b) QYD 型 Figure 1 Type QY decelerator structural diagram: (a) type QYS; (b) type QYD

2、性能特点: Features:

考虑起重机各机构的工作特点、传动比范围、进一步提高产品性能,采用较少规格满足用 户多方面的要求,其特点为:

1) 承载能力高。齿轮采用渗碳、淬火、磨齿加工、承载能力比调质滚齿的软齿面和中硬 齿面齿轮减速器有大幅度提高。

2) 体积小、重量轻。与软齿面和中硬齿面减速器相比,相同承载能力减速器可降低2~4 个相当机座号。

3) 效率高、噪声低、振动小。采用磨齿加工提高了精度等级,齿轮又进行了修缘,每级 齿轮的综合效率为0.98,振动和噪声显著降低。

4) 采用多级数, 减少单级速比, 可拉开中心距、降低减速器整机高度, 满足起重机各机 构的要求; 减速器的最大公称传动比达到 400, 满足了慢速起重机的要求。

5) 三支点减速器,可立式、卧式、甚至偏转一定角度安装,方便灵活。

6) 本系列减速器有三四级结合型(即三级的装配型式,四级的传动比)为慢速起重机的 通用化提供了前提。

Based on the working characteristics of each mechanism on the hoist, scope of transmission rate, less specification is used to meet various requirements of the users while improving product performance with the features as follows:

1) Higher carrying capacity. The gear wheel is treated with carbonization, quenching, gear grinding to get much higher carrying capacity than soft tooth face and medium hard tooth face decelerator treated with hardening, tempering and hobbing;

2) Compact and light-weighted. Compared with soft tooth face and medium hard tooth face declerator, the decelerator with the same carrying capacity will have decreased pedestal number by 24 equivalent.

3) Higher efficiency, lower noise, and lower vibration. Gear grinding is introduced to increase grade of precision, and also the brim of gear wheel is trimmed, so the general efficiency of each step of hoist is 0.98, with much lower vibration and noise.

4) Multiple steps are introduced to decrease single step transmission ratio so as to widen the center distance, to decrease the overall height of the decelerator is up to 400 to meet the requirement of slow speed hoist.

5) 3-supporting-point decelerator can be installed vertically, horizontally, or in deflection by certain degrees, with much convenience and flexibility.

6) This series of decelerator has 3 and 4-step combined type (i.e., assembly form of 3step with the transmission ratio of 4-step), providing the precondition for generalizing slow speed hoist.

3、装配型式 Assembly form

两个系列的减速器装配型式相同,见图2

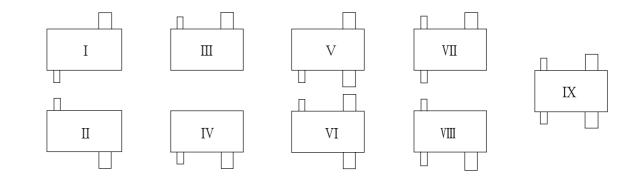


图2 减速器装配型式 Figure 2 Decelerator assembly form

4、安装型式 Installation form

QYS 型减速器有卧式(W)、立式(L)或偏转 $\pm \alpha$ 角度的安装型式。注意浸油高度,保证润 滑良好。见图3

Type QYS decelerator has 3 forms of installation: horizontal (W), vertical (L) and deflective by $\pm \alpha$, Make sure that the height of immersion oil is corrected for proper lubrication. See figure 3.

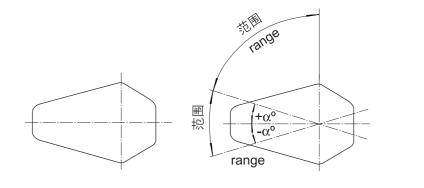
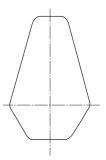



图3 QYS 型减速器安装型式 Figure 3 Installation form of QYS type decelerator

TAILONG MACHINERY

The two series decelerators have same assembly form as follows.

TAILONG MACHINERY

QYS 型减速器的支承型式见图 4。

See figure 4 for the supporting form of type QYS decelerator.

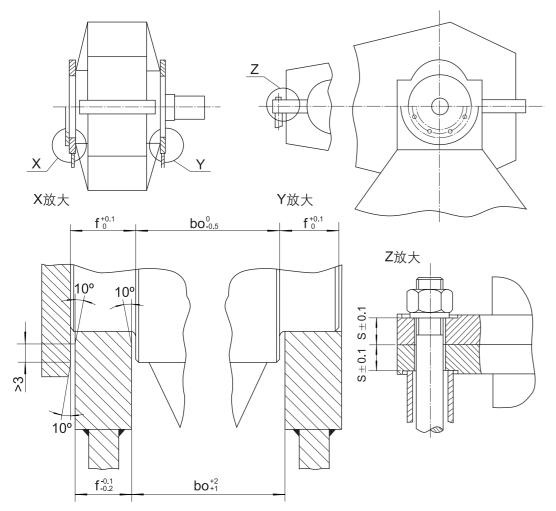


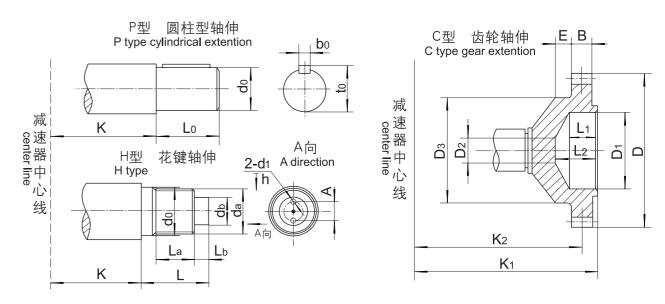
图4 QYS 型减速器的支承型式 Figure 4 Supporting form of type QYS decelerator

QYD 型减速器只有卧式

5、轴端型式 Shaft end mode

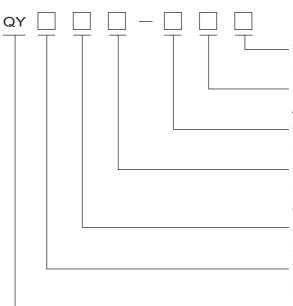
高速轴端采用圆柱轴伸, 平键联接。

低速轴端有三种型式:


- a.P型:圆柱轴伸,平键、单键联接;
- b.H型:圆柱轴伸,渐开线花键联接;
- c. C型:齿轮轴端(仅名义中心距为180-560mm的减速器具有齿轮轴端)。低速轴端的型 式和尺寸见图 5 和表 1。

High-speed shaft end uses cylindrical shaft extension with flat key for connection.

Low-speed shaft end has 3 forms available as follows:


a. Type P: cylindrical shaft extension, flat key, single key for connection

- b. Type H: cylindrical shaft extension, involute spline for connection
 - dimension of low-speed shaft end.

6、型号和标记 Model and notation

标记 Notation

c. Type C: gearwheel shaft end (only the decelerator with nominal center distance of 180-560mm has gear wheel shaft end). See figure 5 and table 1 form and

图5 低速轴端型式 Figure 5 Low-speed shaft end form

```
低速轴端型式(P、H、C)
Low-speed shaft end form (P, H, C)
装配型式(I~IX)
Assembly form (I \sim IX)
公称传动比
Nominal transmission ratio
名义中心距(低速轴中心距)
Nominal center distance (low-speed shaft
center distance)
S(三支点)、D(底坐式)
S (3-supporting-point), D(pedestal type)
级数(3、4、34)
Number of step (3, 4, 34)
起重机用硬齿面减速器
Hard tooth face decelerator used for the hoist
```

TAILONG MACHINERY

标记示例: Example of notation:

- 1) 名义中心距a₁=315, 公称传动比i=56, 装配型式为Ⅲ, 低速轴端为花键轴伸, 起重机 用三支点硬齿面三级减速器。
- 标记为:减速器 QY3S315-56 Ⅲ H。
- 2) 名义中心距 a,=450, 公称传动比 i=280, 装配型式为Ⅱ, 低速轴为齿轮轴端, 起重机 用底座式硬齿面四级减速器。
- 标记为:减速器 QY4D450-280 Ⅱ C。
- 1) Nominal center distance a₁=315, nominal transmission ratio i=56, assembly form is III, low-speed shaft end is spline shaft extension, and the hoist uses 3-supportingpoint hard tooth face 3-stage decelerator.

The notation is: Decelerator QY3S315-56 III H

2) Nominal center distance a1=450, nominal transmission ratio i=280, assembly form is ${}^{\mathrm{II}}$, low-speed shaft is gear shaft end, and the hoist uses pedestal type hard tooth face 4-step decelerator.

The notation is: Decelerator QY4D450-280 $\, ^{II}\,$ C

7、传动比 Transmission ratio

QY3S、QY3D型减速器和QY4S、QY34S、QY4D、QY34D型减速器的公称传动比与实 际传动比分别见表 2 和表 3。

See table 2 and table 3 respectively for the nominal transmission ratio and actual transmission ratio of type QY3S, QY3D decelerators and type QY4S, QY34S, QY4D, QY34D decelerators.

表 1	Table 1	
	l'able i	

名 义 中心距			P 型	Туре Р						H型 1	Гуре Н				
Nominal center distance α ₁	K _s /K _d	d ₀	L _o	b ₀	t _o	mχz	d _a (h ₁₁)	d _b (k ₆)	d ₀ (k ₆)	L	L_{a}	L _b	d ₁	h	А
160	185/155	75	105	20	79.5	3X18	57	50	60	82	35	27	M6	16	25
180	195/165	90	130	25	95	3X22	69	60	70	90	40	30	M6	16	30
200	215/185	95	130	25	100	3X27	84	70	85	95	45	30	M10	20	35
225	230/205	100	165	28	106	5X18	95	80	100	125	55	35	M12	25	40
250	255/225	110	165	28	116	5X22	115	100	120	135	60	40	M12	25	40
280	270/250	130	200	32	137	5X24	125	110	130	140	65	40	M12	25	40
315	310/265	140	200	36	148	5X26	135	120	140	155	75	45	M12	25	50
355	335/290	170	240	40	179	5X30	155	140	160	165	80	50	M12	25	60
400	375/325	180	240	45	190	5X34	175	160	180	180	90	55	M16	30	80
450	415/365	220	280	50	231	5X38	195	180	200	190	100	55	M16	30	80
500	450/420	260	330	56	272	8X26	216	190	222	205	110	60	M16	30	110
560	510/460	280	380	63	292	8X30	248	220	254	220	125	60	M16	30	110
630	565/520	300	380	70	314	8X34	280	250	286	235	140	60	M16	30	140
710	600/550	340	450	80	355	8X38	312	280	318	260	155	70	M20	40	140
800	670/625	400	540	90	417	8X44	360	320	366	285	175	75	M20	40	160

D ₃ 135 170	L ₁ 45	L ₂ 60
170		60
170		60
	50	
	50	75
170	50	75
260	76	100
260	76	100
260	76	100
260	78	100
280	78	100
300	78	100
340	80	110
360	80	110
)	260 260 5 280 5 300 9 340	260 76 260 78 280 78 300 78 340 80

表中 In the talbe: K。——用于三支点减速器

κ_——用于底座式减速器

K_s- K_{n}^{-}

mm

— for 3-supporting-point decelerator for pedestal type decelerator

QY3S和QY3D型减速器的公称传动比与实际传动比 rators 表 2 Table

传动比 Transmission							公称传动	公称传动比 Nominal transmission ratio								
谷 之 人 人 人	16	18	20	22.4	25	28	31.5	35.5	40	45	50	56	63	71	80	06
円心距 Nominal center distance α ₁							实际传动比		Actual transmission ratio	sion ratio						
160	15.43	17.20	19.21	21.53	24.24	27.44	31.28	35.37	38.74	42.86	49.09	54.31	61.49	69.75	79.82	87.30
180	15.84	18.31	20.23	22.41	24.92	27.82	31.73	35.84	39.53	44.65	50.09	57.66	62.15	71.03	82.89	90.94
200	15.70	17.49	19.53	21.89	24.65	27.90	31.81	35.97	39.39	45.23	50.14	57.57	66.02	71.03	80.05	92.59
225	15.93	18.42	20.35	22.55	25.07	27.99	31.92	36.05	40.45	45.88	51.22	58.11	63.55	70.04	80.05	91.32
250	15.60	17.32	19.27	21.51	24.10	27.15	30.78	35.18	38.35	43.83	48.60	55.45	60.94	69.42	79.91	86.13
280	15.87	18.27	20.12	22.21	25.94	28.92	31.06	36.58	38.25	45.04	48.68	54.86	63.46	69.55	80.05	86.28
315	15.21	17.19	19.90	22.02	24.45	27.27	30.58	34.52	38.76	43.75	49.08	54.09	61.71	69.37	79.85	86.07
355	15.84	18.31	20.23	22.41	24.92	27.82	31.73	35.84	39.53	44.65	50.09	57.66	62.15	69.36	78.03	86.97
400	15.95	17.59	20.46	22.72	25.33	28.37	31.96	34.55	39.36	45.03	50.09	57.66	62.15	70.04	80.05	92.59
450	15.69	18.14	20.04	22.20	24.68	27.56	31.43	35.50	39.01	44.98	50.47	58.09	62.62	71.56	78.92	88.79
500	16.06	17.82	19.83	22.13	24.81	27.94	31.68	36.20	39.83	44.58	48.60	54.67	60.94	69.42	79.91	88.59
560	15.87	18.27	20.12	22.21	25.94	28.92	31.06	36.58	38.25	45.04	48.68	54.86	63.46	69.55	80.05	86.28
630	15.69	18.14	20.04	22.20	24.68	27.56	31.43	35.50	39.83	44.98	50.47	55.66	62.62	70.72	81.40	87.74
710	16.05	17.71	20.60	22.88	25.50	28.56	32.18	36.52	39.63	45.50	49.37	56.82	63.00	70.88	79.73	94.10
800	15.95	17.59	20.46	22.72	25.33	28.37	31.96	34.55	39.36	45.30	50.09	57.66	62.15	70.04	80.05	92.59

8

QY34D 型减速器的公称传动比与实际传动比 QY34S 和 QY4D、 QY4S. ო 表

	QY34D dece
	QY34S and QY4D.
	nominal transmission ratio and actual transmission ratio of type QY4S、QY34S and QY4D、QY34D dece
ð	Table 3

Table 3 nominal transmission ratio and	transmis	sion rat	io and a	ctual trai	nsmissic	n ratio o	if type Q	Y4S, Q	Y34S ai	actual transmission ratio of type QY4S、QY34S and QY4D、QY34D decelerators	, дүз4	D decel	erators
传动比 Transmission						公称传动比 Nominal transmission ratio	Nominal tran	ısmission ratio					
atio	100	112	125	140	160	180	200	224	250	280	315	355	400
中心距 Nominal center distance α,						实际传动比 Actual transmission ratio	Actual trans	smission ratio					
200	102.99	114.44	127.79	143.57	162.50	177.99	203.34	229.16	245.96	282.43	304.13	351.79	403.39
225	100.82	114.14	130.11	147.11	161.13	180.79	200.02	220.45	249.59	283.12	309.66	354.33	404.24
250	97.41	108.77	124.04	140.10	157.20	171.37	197.25	227.03	244.72	279.68	306.87	358.09	385.99
280	99.46	112.60	128.36	145.13	158.96	171.82	197.29	222.35	254.96	293.46	315.75	340.35	393.67

TAILONG MACHINERY

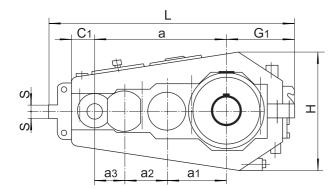
TAILONG MACHINERY -

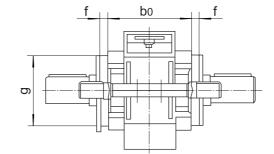
382.81	389.68	405.09	393.01	379.68	393.67	388.44	418.24	405.09
355.15	349.60	350.21	349.34	342.46	340.35	345.28	354.38	350.21
310.75	306.87	319.57	310.75	307.23	315.75	315.32	311.06	319.57
272.39	284.69	296.48	288.30	275.31	276.28	280.29	280.57	296.48
236.65	247.34	257.58	250.47	239.19	240.03	243.51	243.76	257.58
216.37	225.42	222.69	219.55	221.90	222.69	225.92	218.69	222.69
196.32	200.38	197.59	199.08	197.25	197.59	204.85	194.39	197.59
173.07	175.33	175.33	180.63	171.37	171.67	177.98	172.79	175.33
154.28	156.26	153.90	160.99	157.20	158.82	158.62	159.25	153.90
137.51	143.34	142.38	143.52	140.10	139.41	141.37	146.08	142.38
121.75	125.44	120.92	127.13	124.04	128.98	125.17	127.83	120.92
106.76	110.65	112.56	113.36	108.77	114.48	109.76	112.76	112.56
95.61	98.22	100.97	101.63	97.41	102.21	98.30	100.10	100.97
315	355	400	450	500	560	630	710	800

8、外形及安装尺寸 External and installation dimensions

QY3S 减速器的外形及安装尺寸见图 6 和表 4。

QY4S 减速器的外形及安装尺寸见图 8 和表 5。


QY34S 减速器的外形及安装尺寸见图 7 和表 6。


QY3D 减速器的外形及安装尺寸见图 9 和表 7。

QY4D 减速器的外形及安装尺寸见图 10 和表 8。

QY34D 减速器的外形及安装尺寸见图 11 和表 9。

See figure 6 and table 4 for the external and installation dimensions of QY3S decelerator. See figure 8 and table 5 for the external and installation dimensions of QY4S decelerator. See figure 7 and table 6 for the external and installation dimensions of QY34S decelerator. See figure 9 and table 7 for the external and installation dimensions of QY3D decelerator. See figure 10 and table 8 for the external and installation dimensions of QY4D decelerator. See figure 11 and table 9 for the external and installation dimensions of QY34D decelerator.

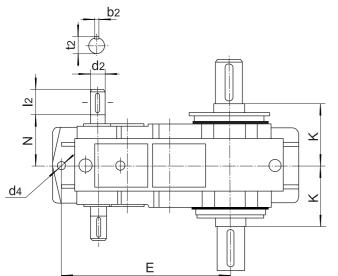
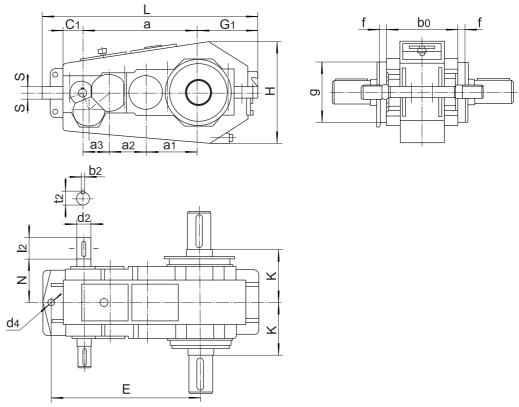



图 6 QY3S 减速器外形尺寸 Figure 6 External dimension of QY3S decelerator

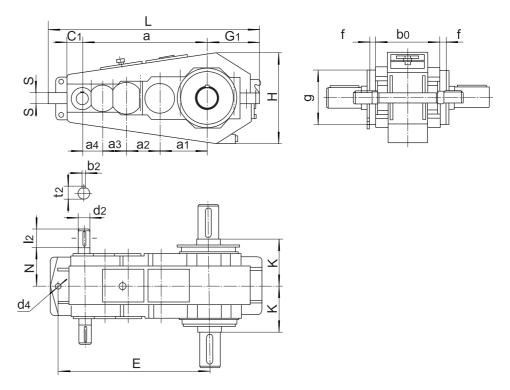


图 8 QY4S 减速器外形尺寸 Figure 8 External dimension of QY4S decelerator

TAILONG MACHINERY

图 7 QY34S 减速器外形尺寸 Figure 7 External dimension of QY34S decelerator

表4 Table 4												mm
名 义 中心距 Nominal center	a ₂	a ₃	а	N				i=16				
distance α ₁					d	_		2) ₂		2
160	112	80	352	135	2	4	5	50	8	3	2	27
180	125	90	395	145	2	8	6	0	8	3	3	31
200	140	100	440	160	3	2	8	0	1	0	3	35
225	160	112	497	175	3	8	8	0	1	0	2	1
250	180	125	555	195	4	2	1	10	1	2	4	5
280	200	140	620	210	4	8	1	10	1	4	5	1.5
						i=16	~56			i=63	~90	
					d_2	I ₂	b_2	t ₂	d ₂	I_2	b ₂	t ₂
315	225	160	700	230	48	110	14	51.5	42	110	12	45
355	250	180	785	240	60	140	18	64	48	110	14	51.5
400	280	200	880	280	65	140	18	69	55	110	16	59
450	315	225	990	290	70	140	20	74.5	60	140	18	64
500	355	250	1105	325	80	170	22	85	65	140	18	69
560	400	280	1240	360	95	170	25	100	75	140	20	79.5
630	450	315	1395	410	110	210	28	116	85	170	22	90
710	500	355	1565	435	120	210	32	127	90	170	25	95
800	560	400	1760	490	140	250	36	148	100	210	28	106

名义 中心距 Nominal center distance α ₁	L	н	b ₀ ⁰ -0.5	f +0.1	g (h ₉)	d ₄	E (Js14)	S	G1	C ₁	К	重量 Weight (kg)
160	670	314	250	18	190	22	457	20	183	60	185	158
180	740	354	270	20	220	22	505	20	205	65	195	204
200	825	394	285	20	240	26	565	25	225	80	215	260
225	925	434	320	20	260	26	637	25	253	86	230	352
250	1020	482	360	25	270	33	705	30	275	96	255	477
280	1128	534	385	25	320	33	780	30	300	101	270	637
315	1302	622	425	25	340	40	890	35	355	118	310	876
355	1432	696	470	30	390	40	985	35	390	128	335	1174
400	1602	780	535	30	440	45	1105	40	435	148	375	1680
450	1772	880	600	40	520	45	1225	40	485	155	415	2402
500	1990	970	660	40	600	52	1375	45	540	180	450	3275
560	2185	1070	730	40	640	52	1525	45	585	192	510	4434
630	2445	1240	815	50	640	62	1700	50	665	212	565	6105
710	2735	1392	880	50	680	62	1900	60	750	229	600	8168
800	3075	1580	985	60	800	70	2125	60	850	249	670	11656

表5 Table	e 5												mm
名 义 中心距 Nominal center	. a ₂	a ₃	a₄	а	N			输入	i=100				
distance α ₁ 200	140	100	71	511	160		9	4			0 ₂		1.5
225	160	112	80	577	175	2	4	5	0	č	3	2	27
250	180	125	90	645	195	2	8	6	0	8	3	3	31
280	200	140	100	720	210	3	2	8	0	1	0	3	5
315	225	160	112	812	230	3	8	8	0	1	0	4	1
355	250	180	125	910	240	4	2	11	10	1	2	4	-5
							i=100	~224			i=250	~400	
						d_2	I_2	b ₂	t ₂	d_2	I ₂	b ₂	t ₂
400	280	200	140	1020	280	48	110	14	51.5	38	80	10	41
450	315	225	160	1150	290	48	110	14	51.5	42	110	12	45
500	355	250	180	1285	325	60	140	18	64	48	110	14	51.5
560	400	280	200	1440	360	65	140	18	69	55	110	16	59
630	450	315	225	1620	410	70	140	20	74.5	60	140	18	64
710	500	355	250	1815	435	80	170	22	85	65	140	18	69
800	560	400	280	2040	490	95	170	25	100	70	140	20	74.5

名义 中心距 Nominal center distance α ₁	L	н	b _{0 -0.5}	f 0.1	g (h ₉)	d_4	E (Js14)	S	G ₁	C ₁	К	重量 Weight (kg)
200	875	394	285	20	240	26	616	25	225	60	215	266
225	990	434	320	20	260	26	702	25	253	71	230	363
250	1085	482	360	25	270	33	770	30	275	71	255	493
280	1203	534	385	25	320	33	855	30	300	76	270	660
315	1382	622	425	25	340	40	982	35	355	98	310	913
355	1532	696	470	30	390	40	1085	35	390	103	335	1217
400	1707	780	535	30	440	45	1210	40	435	113	375	1762
450	1897	880	600	40	520	45	1350	40	485	120	415	2482
500	2135	970	660	40	600	52	1520	45	540	145	450	3380
560	2345	1070	730	40	640	52	1685	45	585	152	510	4571
630	2630	1240	815	50	640	62	1885	50	665	172	565	6375
710	2940	1392	880	50	680	62	2105	60	750	184	600	8468
800	3315	1580	985	60	800	70	2365	60	850	209	670	12066

TAILONG MACHINERY —

_

TAILONG MACHINERY -

表6 Tab	le 6												mm
名义 中心距 Nominal cente distance α ₁	er a ₂	a₃	a ₄	а	Ν	(l ₂	输入	轴端 h i=100 l ₂		aft end D_2	1	t ₂
200	140	100	71	440	160	1	9	4	0	(6	2′	1.5
225	160	112	80	497	175	2	.4	5	50	;	8	2	27
250	180	125	90	555	195	2	.8	6	60	;	8	3	31
280	200	140	100	620	210	3	2	8	80	1	0	3	35
315	225	160	112	700	230	3	8	8	80	1	0	2	¥1
355	250	180	125	785	240	4	2	1	10	1	2	4	5
							i=100	~224			i=250	~400	
						d_2	I_2	b ₂	t ₂	d_2	I_2	b ₂	t ₂
400	280	200	140	880	280	48	110	14	51.5	38	80	10	41
450	315	225	160	990	290	48	110	14	51.5	42	110	12	45
500	355	250	180	1105	325	60	140	18	64	48	110	14	51.5
560	400	280	200	1240	360	65	140	18	69	55	110	16	59
630	450	315	225	1395	410	70	140	20	74.5	60	140	18	64
710	500	355	250	1565	435	80	170	22	85	65	140	18	69
800	560	400	280	1760	490	95	170	25	100	70	140	20	74.5

名义 中心距 Nominal center distance ɑ ₁	L	н	b ₀ -0.5	f ₀ ^{+0.1}	g (h ₉)	d4	E (Js14)	S	G ₁	C ₁	К	重量 Weight (kg)
200	825	394	285	20	240	26	565	25	225	80	215	271
225	925	434	320	20	260	26	637	25	253	86	230	364
250	1020	482	360	25	270	33	705	30	275	96	255	494
280	1128	534	385	25	320	33	780	30	300	101	270	663
315	1302	622	425	25	340	40	890	35	355	118	310	916
355	1432	696	470	30	390	40	985	35	390	128	335	1220
400	1602	780	535	30	440	45	1105	40	435	148	375	1760
450	1772	880	600	40	520	45	1225	40	485	155	415	2502
500	1990	970	660	40	600	52	1375	45	540	180	450	3393
560	2185	1070	730	40	640	52	1525	45	585	192	510	4708
630	2445	1240	815	50	640	62	1700	50	665	212	565	6293
710	2735	1392	880	50	680	62	1900	60	750	229	600	8502
800	3075	1580	985	60	800	70	2125	60	850	249	670	12124

14

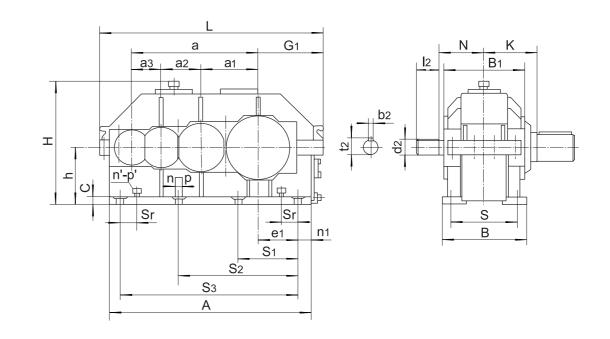


图 9 QY3D 减速器外形尺寸 Figure 9 External dimension of QY3D decelerator

TAILONG MACHINERY -

表7 Table 7

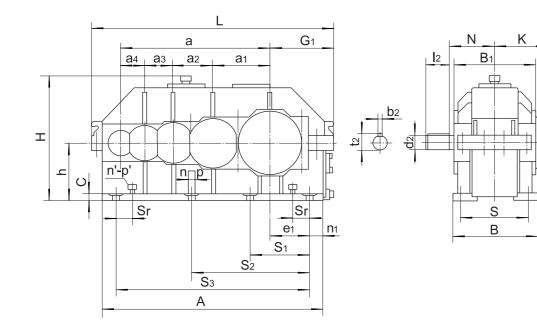
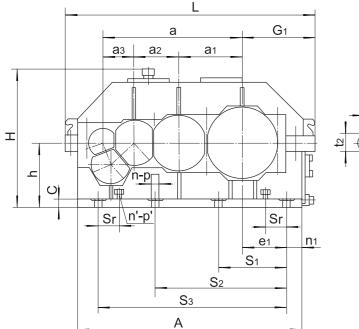
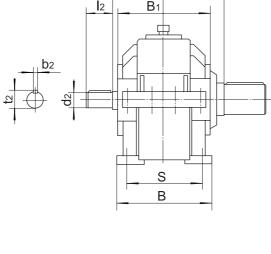




图 10 QY4D 减速器外形尺寸 Figure 10 External dimension of QY4D decelerator

Ν

图 11 QY34D 减速器外形尺寸 Figure 11 External dimension of QY34D decelerator

名 义							输入	轴端 🛛	nput sha	aft end		
中心距 Nominal center distance α ₁	a ₂	a ₃	а	Ν	C	2		i=16 2	~ 90 b	$\mathbf{)}_2$		t ₂
160	112	80	352	135	2			50	8	3		27
180	125	90	395	145	2	8	6	60	8	3	3	31
200	140	100	440	160	3	2	8	30	1	0	3	35
225	160	112	497	175	3	8	8	30	1	0	2	41
250	180	125	555	195	4	2	1	10	1	2	4	15
280	200	140	620	210	4	8	1	10	1	4	51	1.5
						i=16	~56			i=63	~90	
					d ₂	1 ₂	b_2	t ₂	d ₂	1 2	b ₂	t ₂
315	225	160	700	230	48	110	14	51.5	42	110	12	45
355	250	180	785	240	60	140	18	64	48	110	14	51.5
400	280	200	880	280	65	140	18	69	55	110	16	59
450	315	225	990	290	70	140	20	74.5	60	140	18	64
500	355	250	1105	325	80	170	22	85	65	140	18	69
560	400	280	1240	360	95	170	25	100	75	140	20	79.5
630	450	315	1395	410	110	210	28	116	85	170	22	90
710	500	355	1565	435	120	210	32	127	90	170	25	95
800	560	400	1760	490	140	250	36	148	100	210	28	106

名义中心距 Nominal center	外形尺	寸 Extermal d	imension	中心高 Center height -	坮	し脚安装り	रेने मः	lding-down	installatio	on dimensio	on
distance α_1	L	Н	В	h	S	S ₁	S ₂	S ₃		Р	
160	630	352	250	160	200	250	500		20	18	6
180	700	394	265	180	215	280	560		20	18	6
200	780	431	295	200	235	310	620		25	22	6
225	880	479	320	225	260	350	700		25	22	6
250	970	524	360	250	290	390	780		30	26	6
280	1081	579	400	280	325	435	875		30	26	6
315	1230	659	445	315	365	500	1000		35	33	6
355	1384	736	470	355	390	565	1130		35	33	6
400	1549	821	520	400	430	455	845	1265	40	40	8
450	1719	980	570	450	480	500	950	1425	40	40	8
500	1930	1075	630	500	530	575	1060	1590	50	45	8
560	2120	1185	700	560	600	620	1190	1780	50	45	8
630	2375	1335	800	630	680	690	1350	2015	60	52	8
710	2670	1487	850	710	730	755	1515	2270	60	52	8
800	2995	1669	960	800	830	845	1690	2535	70	62	8

名义中心距	调整	螺栓 Adjustm	ent bolt	Δ	P	0			重量
Nominal center distance α ₁	S _r	P'	n'	A	B ₁	G ₁	n ₁	e ₁	Weight (kg)
160				550	220	183	25	118	158
180				620	235	205	30	135	199
200				700	265	225	40	145	260
225				780	290	253	40	163	361
250				870	340	275	45	180	502
280				965	375	300	45	205	678
315				1100	405	355	50	240	917
355	120	M24	4	1230	460	390	50	275	1237
400	140	M24	4	1385	515	435	60	305	1726
450	150	M30	4	1545	590	485	60	350	2567
500	170	M30	4	1730	660	540	70	385	3522
560	180	M36	4	1920	730	585	70	430	4692
630	200	M36	4	2175	835	665	80	500	6476
710	220	M42	4	2430	890	750	80	570	8674
800	240	M42	4	2735	1030	850	100	640	12560

mm

表 8 Table 8

名 义 中心距 Nominal center	a ₂	a ₃	a ₄	а	N			输入	轴端 Ir i=100	nput sha ~400			
distance α_1						C	1 ₂		2	t	D ₂	ť	t ₂
200	140	100	71	511	160	1	9	4	0	(6	21	1.5
225	160	112	80	577	175	2	24	5	0	ł	В	2	27
250	180	125	90	645	195	2	28	6	0	ł	В	3	31
280	200	140	100	720	210	3	32	8	0	1	0	3	35
315	225	160	112	812	230	3	8	8	0	1	0	2	11
355	250	180	125	910	240	4	2	1	10	1	2	4	15
							i=100	~224			i=250	~400	
						d_2	I_2	b ₂	t ₂	d_2	I_2	b ₂	t ₂
400	280	200	140	1020	280	48	110	14	51.5	38	80	10	41
450	315	225	160	1150	290	48	110	14	51.5	42	110	12	45
500	355	250	180	1285	325	60	140	18	64	48	110	14	51.5
560	400	280	200	1440	360	65	140	18	69	55	110	16	59
630	450	315	225	1620	410	70	140	20	74.5	60	140	18	64
710	500	355	250	1815	435	80	170	22	85	65	140	18	69
800	560	400	280	2040	490	95	170	25	100	70	140	20	74.5

名义中心距	外形尺	寸 Extermal d	imension	中心高 Contac bairebt	버	し脚安装り	रज н०	lding-dowr	installatio		on
Nominal center distance α ₁	L	Н	В	Center height h	S	S ₁	S ₂	S ₃		Р	n
200	831	431	295	200	235	310	671		25	22	6
225	945	479	320	225	260	350	700		25	22	6
250	1035	524	360	250	290	390	845		30	26	6
280	1156	579	400	280	325	435	950		30	26	6
315	1322	659	445	315	365	518	1036		35	33	6
355	1484	736	470	355	390	565	1230		35	33	6
400	1654	821	520	400	430	455	915	1370	40	40	8
450	1844	980	570	450	480	515	1035	1550	40	40	8
500	2075	1075	630	500	530	575	1160	1735	50	45	8
560	2270	1185	700	560	600	650	1290	1940	50	45	8
630	2560	1335	800	630	680	730	1470	2200	60	52	8
710	2875	1487	850	710	730	825	1650	2475	60	52	8
800	3235	1669	960	800	830	925	1850	2775	70	62	8

名义中心距	调整	螺栓 Adjustm	ent bolt	— A	P	0			重量
Nominal center distance α ₁	S _r	P'	n'	A	B ₁	G ₁	n ₁	e ₁	Weight (kg)
200				751	265	225	40	145	286
225				845	290	253	40	163	378
250				935	340	275	45	180	523
280				1040	375	300	45	205	698
315				1192	405	355	50	240	968
355	100	M24	4	1330	460	390	50	275	1280
400	110	M24	4	1490	515	435	60	305	1831
450	130	M30	4	1670	590	485	60	350	2675
500	150	M30	4	1875	660	540	70	385	3597
560	160	M36	4	2080	730	585	70	430	4915
630	195	M36	4	2360	835	665	80	500	6572
710	190	M42	4	2635	890	750	80	570	9160
800	240	M42	4	2975	1030	850	100	640	13605

Table 9														mm
名义中心距									输入		put sha	ift end		
Nominal center	a ₂	a ₃	a ₄		N					i=100~				
distance α_1								d ₂		2	b	-		t ₂
200	140	100	71	440	16			19	4		6			1.5
225	160	112	80	497	17			24		0	8			27
250	180	125	90	555	19			28		0	3			31
280	200	140	100	620	21			32		0		0		35
315 355	225 250	160 180	112 125	700 785	23 24			38 42		0 10		0 2		41 45
300	250	100	125	765	24	0	2		~ 224	10	1		ء 400~	+0
							d_2	I=100	b ₂	t ₂	d_2	I=200	b ₂	t ₂
400	280	200	140	880	28	0	48	110	14	51.5	38	80	10	41
450	315	225	160	990	29		48	110	14	51.5	42	110	12	45
500	355	250	180	1105	32		60	140	18	64	48	110	14	51.5
560	400	280	200	1240	36		65	140	18	69	55	110	16	59
630	450	315	225	1395	41	0	70	140	20	74.5	60	140	18	64
710	500	355	250	1565	43	5	80	170	22	85	65	140	18	69
800	560	400	280	1760	49	0	95	170	25	100	70	140	20	74.5
名义中心距	外形尺寸	Extermal	dimension	中心高			地脚	安装尺		lding-dow	n instal	llation d	imensio	n
nal center distance α_1	L	Н	В	Center heig		S		S ₁	S ₂	S ₃	с		Р	n
200	780	431	295	200		235		310	620		2	5	22	6
225	880	479	320	225		260		350	700		2	5	22	6
250	970	524	360	250		290		390	780		3	0	26	6
280	1081	579	400	280		325		435	875		3	0	26	6
315	1230	659	445	315		365		500	1000		3	5	33	6
355	1384	736	470	355		390		565	1130		3	5	33	6
400	1549	821	520	400		430		455	845	1265	4	0	40	8
450	1719	980	570	450		480	1	500	950	1425	4	0	40	8
500	1930	1075	630	500		530		575	1060	1590	5	0	45	8
560	2120	1185	700	560		600		620	1190	1780	5	0	45	8
630	2375	1335	800	630		680		690	1350	2015	6	0	52	8
710	2670	1487	850	710		730		755	1515	2270	6	0	52	8
800	2995	1669	960	800		830		845	1690	2535	7	0	62	8
名义中心距	调整螺	栓 Adjustr	nent bolt	А		B₁		G₁		n₁		e₁	Ī	自量

名义中心距	调整螺栓		bolt	А	B ₁	G ₁	n ₁	e ₁	重量
Nominal center distance α_1	S _r	P'	n'		D ₁	\bigcirc_1	''1	U1	Weight (kg)
200				700	265	225	40	145	272
225				780	290	253	40	163	372
250				870	340	275	45	180	521
280				965	375	300	45	205	708
315				1100	405	355	50	240	965
355	160	M24	4	1230	460	390	50	275	1295
400	180	M24	4	1385	515	435	60	305	1813
450	200	M30	4	1545	590	485	60	350	2677
500	225	M30	4	1730	660	540	70	385	3660
560	110	M36	4	1920	730	585	70	430	4864
630	120	M36	4	2175	835	665	80	500	6740
710	295	M42	4	2430	890	750	80	570	8980
800	380(240)	M42	4	2735	1030	850	100	640	12976

9、承载能力 Carrying capacity

表 9

名义中 ninal cente

mm

QY3S 和 QY3D 减速器的公称输入功率见表 10。 QY4S、QY34S 和 QY4D、QY34D 减速器的公称输入功率见表 11。 See table 10 for the nominal input power of QY3S and QY3D decelerators. See table 11 for the nominal input power of QY4S, QY34S and QY4D, QY34D decelerators.

TAILONG MACHINERY

Ð
q
σ
\vdash
0
表
$\Pi \mathcal{H}$

0

	90.0		2.1 3.1 4.4 6.3 9.7 12.5 51.5 51.5 51.5 51.5 72.0 95.6 134.2 174.4 174.4 174.4 174.4 174.4 174.4 172.0 95.6 134.2 15.7 3.8 3.8 3.8 3.8 3.8 17.9 17.9 17.9 17.9 17.9 17.9 218.0 3.8 3.8 3.8 3.8 3.8 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9
	80.0		2.4 3.2 5.1 7.2 10.5 13.5 13.5 13.5 13.5 13.1 144.6 264 9.0 13.1 144.6 287.0 6.4 9.0 13.1 16.9 24.1 16.9 24.1 16.9 25.7 52.7 69.4 99.7 128.8 338.0 358.7 338.0
	71.0		2.6 3.9 5.5 8.2 8.2 11.9 11.9 11.9 90.9 112.9 112.9 112.9 112.9 112.9 113.6 113.6 12.1 12.3 12.3 12.3 113.6 12.3 12.3 113.6 12.3 113.6 12.3 113.6 12.3 113.6 12.3 113.6 12.3 113.6 12.3 113.6 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3
	63.0		2.7 4.5 6.2 9.0 13.7 17.0 24.9 38.2 54.3 73.0 104.5 172 260.1 369.1 369.1 369.1 369.1 369.1 369.1 17.2 7.8 111.3 17.2 21.3 31.1 47.7 67.9 91.2 17.2 21.3 31.1 47.7 47.7 667.9 91.2 325.1 325.1 461.4
	56.0		2.9 4.8 7.1 9.9 15.1 15.1 19.7 28.4 41.1 58.5 58.5 78.7 116.5 150.2 288.2 397.7 3.6 6.0 8.9 8.9 12.4 18.8 24.6 8.9 8.9 12.4 18.7 73.1 98.3 145.6 187.7 73.1 98.3 145.6 81.4 73.1 98.3 73.1 98.3 73.1 98.3 73.1 73.1 98.3 73.1 73.1 73.1 73.1 73.1 73.1 73.1 73
	50.0		3.7 5.5 5.5 8.2 11.2 117.2 222.2 31.3 47.5 67.3 90.5 17.3 169.1 222.7 331.4 4.7 6.9 169.1 84.1 113.1 163.4 27.5 59.1 84.1 113.1 163.4 27.5 59.1 84.1 113.1 163.4 27.5 59.1 84.1 113.1 59.1 84.1 113.4 27.5 57.1 59.1 84.1 113.4 59.1 50.9 10.2 114.0 27.5 59.1 84.1 84.1 114.0 27.5 59.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84
	45.0	power (kw)	4.1 6.2 9.0 12.6 12.6 12.6 13.1 5.3.1 73.0 101.5 73.0 101.5 73.0 101.5 73.0 101.5 73.0 101.5 73.0 101.5 73.0 101.5 7.8 5.1 7.8 1126.8 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2
公称传动比 Nominal transmission ratio	40.0		4.6 7.0 7.0 10.1 14.2 21.4 28.2 39.6 59.9 82.8 114.5 163.0 214.9 282.8 562.2 56.8 8.8 8.8 8.8 17.8 562.2 56.8 35.3 143.2 268.6 35.3 103.5 103.5 72.9 509.4
tk Nomir	35.5	功率 Nom	5.2 7.9 7.9 11.4 15.9 23.8 292.8 128.4 175.5 66.0 92.8 128.4 175.5 66.0 92.8 128.4 14.2 14.2 19.9 629.7 36.9 55.5 82.5 82.5 219.4 160.6 558.7 787.1
公称传动	31.5	称輸入り	5.9 8.6 12.8 17.8 27.1 34.5 49.6 74.5 104.5 143.7 262.7 369.3 369.3 502.1 7.3 10.7 7.3 10.7 16.0 7.3 10.7 16.0 222.3 33.9 43.1 62.1 93.2 130.6 1779.6 62.1 885.7 885.7
	28.0	4	6.7 8.6 14.5 19.9 30.8 37.0 55.6 84.9 117.6 163.7 2227.0 2282.0 420.6 564.6 564.6 564.6 797.1 106.2 10.7 18.2 24.8 38.4 46.3 69.6 106.2 147.0 224.8 38.4 795.7 18.2 283.8 996.4
	25.0		7.3 9.2 16.5 21.3 36.8 41.3 62.0 94.8 131.6 131.6 131.6 131.6 131.6 131.5 891.4 9.1 11.5 255.5 891.4 11.5 26.7 26.7 26.7 11.8 5 164.5 27.5 11.8 5 332.5 586.3 3392.5 586.3 779.5 1114.3
	22.4		7.9 9.8 18.0 18.0 22.8 39.6 68.8 68.8 146.6 220.9 520.8 56.0 992.0 992.0 992.0 992.0 992.0 992.0 128.5 183.2 286.6 131.6 131.6 133.2 286.6 86.6 133.7 56.6 86.6 1240.0 1240.0
	20.0		8.4 10.4 19.3 24.2 47.9 76.1 159.1 159.1 159.1 159.1 159.1 1099.5 13.0 524.1 779.2 1099.5 13.0 52.9 552.1 1374.4
	18.0		9.0 11.0 20.6 25.6 45.0 50.9 86.2 172.7 2247.7 354.4 443.8 635.5 904.3 11.2 13.7 25.7 32.0 56.2 63.6 107.8 11.2 754.3 329.7 56.2 56.2 56.2 56.2 56.2 56.2 57.3 11.0 107.8 11.0 215.8 309.7 56.2 56.2 57.3 11.0 107.8 11.0 55.4 11.0 10.7 8 11.0 10.7 8 11.0 10.5 11.0 10.5 11.0 11.0 11.0 11.0
	16.0		9.5 11.8 21.9 27.7 47.6 54.6 92.8 127.5 127.5 127.5 127.5 181.3 395.6 1403.9 1403.9 1403.9 1403.9 1403.9 1403.9 1403.9 1403.9 1403.9 116.0 159.4 59.5 68.3 116.0 159.4 59.5 68.3 11754.9
緧 书 史	Output	torque (Nm)	2800 3800 6300 8800 13400 16500 53000 53000 53000 102000 128000 128000 3800 6300 8800 13400 128000 53000 53000 102000 1128000 53000 5250000 525000 525000 525000 525000 525000 525000 525000 525000 525000 525000 525000 525000 525000 525000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 5250000 52500000 5250000 52500000 52500000 52500000000
名主义	Nominal	distance α_1 (mm)	160 180 225 225 225 225 2250 2280 2250 230 160 160 160 160 160 160 160 160 160 16
输 本 法 法	нн то хос Input shaft rotating		600 750

20

Table 10 (finished) 表 10 (续)

输 大 杜林 法	名	律 街 田 史							公称传动比	ŁŁ Nomir								
Input shaft rotating	Nominal center	÷.	16.0	18.0	20.0	22.4	25.0	28.0	31.5	35.5	40.0	45.0	50.0	56.0	63.0	71.0	80.0	90.0
speed (r/min)	distance α_1 (mm)	torque (Nm)						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	、称輸入は	功率 Non		power (kw)						
1000	160 180 200 225 225 225 230 315 280 315 315 315 315 315 315 315 315 315 315	2800 3800 6300 8800 13400 16500 25000 37000 53000 102000 1128000 128000 128000 355000 355000 355000 355000	15.9 19.7 36.4 46.1 79.3 91.1 154.7 212.6 302.2 450.3 654.7 830.7 1215.5 11215.5 1259.3 2339.8	15.0 18.3 34.3 42.7 75.0 84.8 143.7 197.7 287.8 412.9 590.7 739.7 739.7 1059.1 1507.2 2125.8	14.1 17.3 32.2 40.4 70.5 79.8 126.9 187.3 265.2 531.5 672.7 960.2 960.2 1298.7	13.1 16.3 30.0 38.0 66.0 75.4 1114.7 175.5 244.3 338.1 476.7 610.0 867.9 867.9 1171.5	12.2 15.3 27.4 35.6 61.4 68.8 68.8 103.4 103.4 103.4 219.4 304.4 304.4 781.7 781.7 1052.5 1052.5	11.2 14.3 24.2 33.1 51.3 61.7 92.7 141.6 196.0 196.0 272.8 378.4 470.0 700.9 940.9 940.9	9.8 14.3 21.3 29.7 29.7 45.2 57.5 82.7 124.2 174.1 124.2 174.1 239.5 334.1 437.8 615.4 836.8 836.8	8.7 13.1 19.0 26.5 39.6 49.1 74.0 110.0 154.7 214.1 292.6 374.5 550.2 744.9 1049.5	7.7 11.7 16.9 23.7 35.7 47.0 66.0 99.8 138.0 190.9 271.6 358.2 358.2 490.8 679.1 836.9	6.8 40.4 14.9 21.0 33.3 39.9 58.4 88.4 121.7 169.1 169.1 169.1 237.9 304.5 599.0 599.0	6.2 9.2 13.6 18.7 18.7 28.7 52.1 78.8 112.2 150.8 218.3 281.9 387.9 552.4 762.2	4.8 8.0 11.9 16.5 25.1 25.1 32.8 68.5 97.5 97.5 131.1 194.1 194.1 194.1 194.1 194.1 194.3 337.2 862.8	4.4 7.5 15.1 15.1 15.1 222.9 63.6 90.5 90.5 90.5 121.7 174.2 121.7 174.2 313.0 813.5 615.1	4.3 6.5 9.2 13.7 19.9 24.7 56.5 80.3 105.7 151.4 188.2 272.1 385.5 546.3	4.0 5.4 8.5 12.0 17.5 22.5 50.7 70.3 92.6 171.8 221.0 322.9 32.1 50.7 70.3 92.6 171.8 342.9 342.9	3.5 5.2 7.4 10.5 16.2 29.8 45.5 60.8 85.9 120.0 159.4 120.0 159.4 223.7 220.7 159.4 13.8
1500	160 180 200 225 225 225 280 2315 315 280 260 500 560 560 560 710 800	2800 3800 6300 8800 13400 16500 25000 37000 53000 102000 1128000 128000 128000 355000 355000 355000 355000	23.8 29.5 54.6 69.2 119.0 136.6 232.0 318.9 453.3 675.5 982.0 982.0 1246.0 1246.0 1289.0 3509.7 3509.7	22.5 27.4 51.5 64.0 112.4 127.2 215.6 296.5 431.7 619.3 886.0 1109.5 1588.6 2260.7 3188.8 3188.8	21.1 25.9 48.3 60.5 105.8 119.7 190.3 397.8 397.8 397.8 561.3 797.3 1009.0 1440.3 1948.1 2748.9	19.7 24.5 45.0 57.0 99.0 113.0 172.1 263.2 366.5 507.1 715.1 915.0 1301.9 1757.2 2480.0	19.3 22.9 41.1 53.4 92.1 103.1 155.1 236.9 329.0 456.6 638.7 785.0 1172.5 1578.7 785.0	16.7 21.4 36.4 49.7 76.9 92.6 155.1 255.1 292.0 409.3 567.6 704.9 1051.4 1051.4	14.7 21.4 31.9 44.5 67.9 86.2 139.1 186.2 139.1 186.2 501.1 656.7 501.1 656.7 923.1 1255.2	13.0 19.7 28.5 39.8 59.4 73.7 1111.0 165.1 2332.0 321.1 438.9 561.7 825.2 825.2 1117.3	11.6 17.6 25.3 35.5 53.6 70.5 98.9 149.7 207.0 2286.4 407.4 537.3 736.2 1018.7	10.3 15.6 22.4 31.5 46.9 59.9 87.7 132.6 132.6 132.6 132.6 887.7 356.8 456.8 652.3 898.7 1239.5	9.4 13.9 20.4 28.0 43.0 55.4 118.3 168.2 118.3 168.2 226.2 327.4 422.8 828.6 828.6 828.6	7.3 12.1 17.8 24.7 24.7 37.7 49.2 71.0 102.8 146.2 196.6 291.2 375.4 375.4 720.5 994.2	6.6 11.2 15.5 22.6 34.3 42.6 62.2 95.4 135.7 135.7 135.7 132.5 261.3 324.8 469.4 650.2 922.7	6.5 9.8 13.8 20.5 20.5 29.8 37.0 54.1 84.8 120.5 120.5 120.5 128.3 227.2 227.2 282.3 819.4	6.0 8.0 12.8 18.0 26.2 33.8 48.1 76.0 105.4 138.8 199.5 514.3 361.5 514.3	 5.3 8.0 11.1 15.7 15.7 24.3 31.3 44.6 68.2 91.2 91.2 91.2 128.8 128.8 128.8 1335.5 436.1 620.7

TAILONG MACHINERY

TAILONG MACHINERY -

Table 11 表 11

100.0 112.0 125.0 140.0 160.0
3.1 2.9
4.4 4.0
7.7 6.8 6.1
9.6 8.4 7.6
12.8 11.5
21.5 18.9 16.8
27.9 24.0
40.4 36.0
46.2
128000 80.8 72.7 64.2 60.1 53.7
94.2 84.3
145.6 128.5 114.5
204.3 190.3
3.9 3.6 3.3
6.3 5.5 5.0
8.4 7.6
12.0 10.6 9.5
18.2 16.0
26.8 23.7 21.0
37.5 34.9 30.0
40.4
57.8
105.4
252000 205.0 182.1 160.6 143.1 132.7
237.9

Table 11 (finished) 表 11 (续)

输 大 油转读	名 中 名 小 正	输转					2	称传动比		公称传动比 Nominal transmission ratio					
Input shaft rotating	Nominal	-	100.0	112.0	125.0	140.0	160.0	180.0	200.0	224.0	250.0	280.0	315.0	355.0	400.0
speed (r/min)	distance α_1 (mm)	(Nm)					\$	公称输入功率		Nominal input power (kw)	Ŵ				
	200	6300	5.5	5.1	4.8	4.4	4.0	4.0	3.6	3.3	3.1	2.6	2.4	2.1	1.9
	225	8800	9.5	8.4	7.4	6.6	6.1	5.6	5.1	4.7	4.2	3.8	3.5	3.1	2.8
	250	13400	14.3	12.8	11.3	10.1	9.2	8.5	7.5	6.7	6.3	5.6	5.2	4.5	4.2
	280	16500	18.1	16.0	14.1	12.7	11.7	11.0	9.7	8.8	7.8	6.9	6.5	6.1	5.4
	315	25000	27.1	24.3	21.3	19.1	17.3	15.7	14.1	13.0	12.0	10.6	9.5	8.5	7.9
	355	37000	40.3	35.8	31.5	28.0	26.0	23.5	21.0	18.9	17.5	15.5	14.5	13.0	11.8
1000	400	53000	55.8	50.0	46.6	40.1	37.5	33.5	30.2	27.2	24.0	21.2	19.9	18.4	16.2
	450	72000	75.1	67.3	60.0	53.9	48.8	44.2	40.6	37.3	33.3	29.5	27.6	25.0	22.5
	500	102000	109.1	97.8	85.7	77.0	69.7	64.7	57.2	51.7	48.4	42.8	39.0	35.4	32.4
	560	128000	134.7	120.3	107.1	100.1	89.4	83.6	74.0	66.7	62.5	55.3	49.3	46.2	40.7
	630	185000	199.7	178.9	156.9	140.5	127.2	115.1	101.9	93.6	87.7	77.6	70.0	64.7	58.4
	710	252000	273.3	242.7	214.2	190.8	177.0	164.9	148.9	134.4	122.3	108.2	98.9	88.3	76.4
	800	355000	379.6	340.6	317.1	272.7	254.9	227.6	205.1	184.9	162.9	144.1	135.0	124.7	109.8
	200	6300	8.3	7.7	7.2	6.6	6.1	6.0	5.4	4.9	4.6	3.9	3.6	3.2	2.8
	225	8800	14.3	12.6	11.1	10.0	9.2	8.4	7.7	7.1	6.3	5.7	5.3	4.7	4.2
	250	13400	21.5	19.3	16.9	15.2	13.8	12.8	11.3	10.0	9.4	8.4	7.7	6.8	6.4
	280	16500	27.2	24.0	21.1	19.0	17.6	16.4	14.6	13.2	11.7	10.4	9.8	9.2	8.1
	315	25000	40.7	36.4	32.0	28.7	26.0	23.6	21.2	19.5	18.0	16.0	14.3	12.7	11.9
	355	37000	60.4	53.6	47.3	42.0	39.0	35.3	31.5	28.4	26.2	23.2	21.8	19.4	17.7
1500	400	53000	83.6	75.0	69.9	60.1	56.2	50.2	45.3	40.8	36.0	31.9	29.9	27.6	24.3
	450	72000	112.6	101.0	90.9	80.8	73.2	66.3	60.9	56.0	49.9	44.2	41.4	37.4	33.8
	500	102000	163.7	146.6	128.6	115.5	104.5	97.0	85.9	77.5	72.6	64.3	58.4	53.2	48.6
	560	128000	202.0	180.4	160.6	150.2	134.1	125.4	111.0	100.1	93.8	83.0	73.9	69.3	61.0
	630	185000	299.6	268.4	235.4	210.8	190.8	172.7	152.8	140.4	131.5	116.4	105.1	97.1	87.6
	710	252000	410.0	364.1	321.3	286.1	265.5	247.3	223.3	201.6	183.4	162.3	148.4	132.5	114.7
	800	355000	569.4	510.8	475.7	409.0	382.3	341.4	307.7	277.3	244.4	216.2	202.2	187.0	164.7

TAILONG MACHINERY —

TAILONG MACHINERY -

TAILONG MACHINERY

减速器输出轴端的最大允许径向载荷 R,作用于轴伸长度的中点位置,其值见表 12。

R, the allowable maximum radial load of decelerator output shaft end, is applied on the central of shaft extension length, see table 12 for its value.

表 12 Table 12

名义 中心距 Nominal center distance a (mm)	160	180	200	225	250	280	315	355	400	450	500	560	630	710	800
最大允许径向 载荷 R (KN) Allowed maximum radial load	10	15	25	32	40	48	52	60	90	120	150	170	200	240	270

减速器输出轴端的瞬时允许转矩为额定转矩的2.7倍。

The allowed instantaneous torque of decelerator output shaft end is 2.7 times of the rated torque.

10、选用方法

1) 确定减速器的公称传动比 i,

计算传动比
$$i_s = \frac{n_1}{n_2}$$

式中: i ——要求传动比;

n, ——原动机传速, r/min;

n_。——工作机转速,r/min。

根据要求的传动比选取接近的公称传动比 i

2) 确定减速器的公称输入功率 P_№

减速器的计算功率: $P_s=P_s \times f_s \times f_s$

式中: P。——起重机机构的功率, kw;

f,——工作机系数,根据起重机机构的载荷状况和利用等级按表 13 选取,(如 果对起重机的工作级别不了解,可参考《起重机设计规范》(GB/T3811) 附录N);

f。——原动机系数,对电动机和液压马达取f。=1。

根据 n_1 、 i_N 和 P_s 查表 11 选取减速器的型号,使 P_N ≥ P_s 3) 校核减速器的最大转矩

如果 P_N 未通过则要增大一机座号再验算,直至通过为止。 例: 一台起重量为 32^t, 跨度 22.5m 连续装卸用的抓斗桥式起重机, 其起升机构所需静功 1) 计算传动比

$$i_s = \frac{n_1}{n_2} = \frac{750}{18.5} = 40.5$$

选 i、=40, 三级传动 2) 确定减速器公称输入功率

$$P_{s} \ge P_{2} \ge f_{1} \ge f_{2}$$

机构载荷状况为L3,利用等级为T6,查表13,f,=1.2;减速器的计算功率

P_=50 × 1.2 × 1=60kw

当 n,=750r/min, i,=40, 查表 10, a,=355mm, 减速器公称输入功率 P,=74.9kw, 满

足要求。

3) 校核减速器的最大转矩

电动机的额定转矩

$$M_n = 9550 \times \frac{P_1}{n_1} = 9550 \times \frac{60}{75}$$

由L3-T6-M7 查表 13, f₂=1.0

$$P_{N} = \frac{M_{n} \times n_{1} \times f_{3}}{9550} = \frac{764}{7}$$

减速器公称输入功率 P,=74.9kw > 60kw,满足要求。

最后选定减速器为 QY3D355-40 Ⅲ C

Selection method

1) Determine i,, the nominal transmission ratio of decelerator Calculate transmission ratio $i_s = \frac{n_1}{n}$

In which:

f。——峰值转矩系数,根据机构的载荷状况和利用等级由表 13 选取。

率为 50kw, 起升速度为 8m/min, 卷筒转速为 18.5r/min, 机构工作级别为 M7, 起升电动机的 额定功率为 60kw,转速 750r/min。试选择减速器(底座式,第Ⅲ种装配型式,齿轮轴端)。

根据连续装卸用抓斗桥式起重机,工作级别为M7,查GB/T3811附录N可知,主起升

 $\frac{60}{50} = 764$ Nm

× 750 × 1 —— =60kw 9550

TAILONG MACHINERY

required transmission ratio

rotating speed of prime mover, r/min n₁

rotating speed of working machine, r/min n₂

Select the approximate nominal transmission ratio i_N, according to the required transmission ratio.

2) Determine nominal input power of decelerator, P_N

Calculate decelerator horsepower: $P_s = P_2 \times f_1 \times f_2$

In which:

 P_{2}^{-} —horsepower of hoist mechanism, kw

working machine factor, selected in table 13 according to the loading status and using grade of hoist mechanism (if you don t know working grade of the hoist, refer to Hoist Designing Criteria (GB/T3811) appendix N)

 f_2 prime mover factor, f_2 =1 is selected for motor and hydraulic motor.

Use table 11 to select decelerator model according to n₁, i_N and P_S, and allow P_N \ge P_S

3) Check for maximum torque of decelerator

$$\mathsf{P}_{\mathsf{N}} \ge \frac{\mathsf{M}_{\mathsf{n}} \times \mathsf{n}_{\mathsf{1}} \times \mathsf{f}_{\mathsf{3}}}{9550}$$

In which:

Μ rated torque of motor, N · m

peak torque factor, selected in table 13 according to the loading status and f using grade of the hoist mechanism.

If P_{N} is not qualified, machine support number should be added by one before calculation until it is qualified.

Example: a grab bucket bridge type hoist, with the weight of 32^t, the span of 22.5m, for continuous operation. The net power required by its hoisting mechanism is 50kw, hoisting speed is 8m/min, rotating speed of the roller is 18.5r/min, working grade of the mechanism is M7, rated horsepower of the hoisting motor is 60kw, and the rotating speed is 750r/min. Select proper decelerator (pedestal mode, type III assembly form, gear wheel shaft end).

1) Calculate transmission ratio

$$i_s = \frac{n_1}{n_2} = \frac{750}{18.5} = 40.5$$

Select i_N=40, 3-step transmission

2) Determine nominal input power of the decelerator

$$P_{s} \ge P_{2} \ge f_{1} \ge f_{2}$$

According to the continuous loading and unloading grab bucket bridge type hoist with the working grade of M7, check GB/T3811 appendix N and find out the loading status of main hoisting mechanism is L3, using grade is T6, check table 13, and find $f_1=1.2$; Decelerator calculated power is

$$P_{s}$$
=50 × 1.2 × 1=60kw

decelerator is P_N=74.9kw, and it can meet the requirement.

3) Check maximum torque of the decelerator

The rated torque of motor is

$$M_n = 9550 \times \frac{P_1}{n_1} = 9550 \times \frac{60}{750} =$$

According to L3-T6-M7, use table 13, and find f₂=1.0

$$P_{N} = \frac{M_{n} \times n_{1} \times f_{3}}{9550} = \frac{764 \times 10^{-10}}{900}$$

Nominal input power of decelerator is $P_{N}=74.9$ kw > 60kw, so it can meet the

requirement.

The final selection of decelerator is QY3D355-40 III C.

When $n_1=750r/min$, $i_N=40$, use table 10, and find $a_1=355mm$. Nominal input power of

=764Nm

 $\frac{\times 750 \times 1}{9550}$ =60kw

載荷状	载荷状况 Load status	立方根										利用系数		Using grade	qe								
栽沽		均值 4)	系数																				
教授	说明									ΆŞ	的使用	总的使用时间(小时)	()()	Total us	Total using hours (hr)	rs (hr)							
Load condition	Instruction	cube root average value 4)	Factor	₩	≤200	>200 ~400	88	>400 ~ 800	00	>800 ~1600	0 8	> 1600 ~ 3200	00	> 3200 ~ 6300	00	>6300 ~12500		>12500 ~25000		>25000 ~50000	00	> 50000	00
妵	很少额定载 荷,一般轻微		1) f1	0.8		0.8		0.8		0.8		0.8		0.9	,	1.0	``	1.0	÷			1.2	
L 1		K≪ 0.05	2) f3	0.8	M 1	0.8	M1	0.8	M	0.8	M2	0.8	M3	0.8	M4	0.9 N	M5 1	1.0	M6 1.	1.15 N	M7	1.3	M8
L1 L1	Very low rated load, general light load		3) f3	1.2		1.2		1.3		1.3		1.3		1.3	,	1.4	,	1.5	4	1.6		1.8	
₽	有时额定载荷 经常作用轻微		1) f1	0.8		0.8		0.8		0.9		0.9		1.0	·	<u>+</u> .	·	1.2	-	1.3		1.4	
L2 Medium		Veu.u	2) f3	0.8	M1	0.8	۶	0.8	M2	0.8	M3	0.8	M4	0.8	M5 0	0.9 N	M6	1.0 ≥	M7 1.	1.15 N	M8	1.3	6M
L2	appli	0.03	3) f3	1.2		1.2		1.3		1.3		1.3		1.3	,	1.4	,	1.5	-	1.6		1.8	
圕	经常作用额定 载荷一般作用 由笔 _耕 店		1) f1	0.8		0.8		0.9		1.0		1.0		<u>.</u>	,	1.2	,	1.3	4	1.4		1.6	
L3 Heavv	ד -ד =אנויים Regularly applied rated load	V.03∧ K≪	2) f3	0.8	M1	0.8	M2	0.8	M3	0.8	M4	0.8	M5 (6.0	M6	1.0 N	M7 1	1.15 N	M8	1.3	6W	1.5	M10
ГЗ	Generally applied medium load	0.00	3) f3	1.2		1.3		1.3		1.3		1.3		1.4	·	1.5	``	1.6	~	1.8		2	
特 L4 4	频繁作用额定 _{裁荷}	0.80<	1) f1	0.8		0.8		0.9		1.0		1.0		1.1	,	1.2	,	1.3	4	1. 4.		1.6	
Extra	Frequently	X { ≬ ≬	2) f3	0.8	M2	0.8	M3	0.8	M4	0.8	M5	0.8	M6	0.9	M7	1.0 N	M8 1	1.15 N	M9	1.3 N	M10	1.5	M11
L4 L4	load	2	3) f3	1.2		1.3		1.3		1.3		1.3		1.4		1.5	X	1.6	-	1.8		2	

Woking machine factor $\boldsymbol{f}_1,$ peak torque factor \boldsymbol{f}_3

Table 13

尖峰转矩系数 f₃

工作机系数 f₁,

13

表

起重机的起升和变幅机构。 下,起重机的回转和运行机构 计规范》机构载荷谱。 拖拖 载载起 定变 恒交见 在在洋 数数 <u>豕</u> 矩 矩 均 数 系 系 值 机转转根 锋锋方 НЖЖй **たむむべたむむべ**

Ē

机设计规范》 Ŵ

ťą

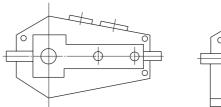
qe amplit

er constant load alternating load e factor is under o factor is under al torque orque fa peak when the hoist ٥f mechanism working machine fi the hoisting and ar
 the revolving and r
 cube root, see Hois - \otimes \otimes + - \otimes \otimes + \otimes \otimes +

hanism of th Criteria for I

ie hoist when pea machanism load ing and running mech see Hoist Designing

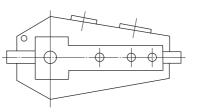
spectrum

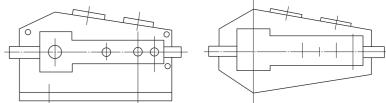


二、QJY 型起重机用硬齿面减速器 Type QJY decelerator used for hoist

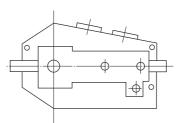
1、产品分类 Product classification

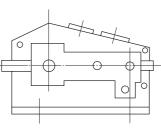
QJY系列减速器是工厂根据国内外市场要求开发的硬齿面(渗碳,淬火齿面)起重机减速 器,包括三大类 12 种基本型式。其结构见图 12,其型式代号与主要参数见表 14。


QJY series decelerator is a hard tooth face (carbonized, quenched tooth face) hoist-used decelerator developed to meet the requirements of the market both at home and abroad, including 3 major classifications and 12 basic forms. See figure 12 for its structural diagram, and table 14 for its form code and main parameters. QJY2 QJYD2 QJYA2

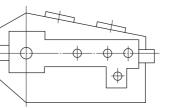


QJY3

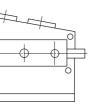

QJYD3

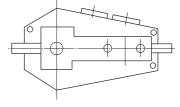


QJY23


QJYD23

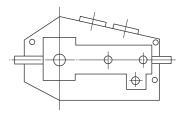
QJY34

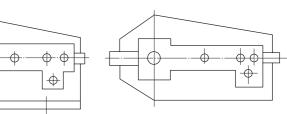




 \oplus \oplus 图 12 QJY 减速器简图

Figure 12 Type QJY decelerator diagram


TAILONG MACHINERY



QJYA23

QJYD34

QJYA34

表 14 QJY 系列减速器型式代号与主要参数

Table 14 QJY series decelerator model denotation and main garameters

	代号	Denotation		级数	传动比范围	许用功率范围	名义中心距离范围
基本型 Basic type	紧凑型 Compact type	地脚安装型 Anchor bolt installation type	空心轴型 Hollow shaft type	Number of stages	Range of transmission ratio	Range of allowed power	Range of nominal center distance
QJY2		QJYD2	QJYA2	2	6.3-20	8.7-5717	140-800
QJY3	QJY23	QJYD3 QJYD23	QJYA23 QJYA3	3	20-100	2.9-1801	170-800
	QJY34	QJYD34	QJYA34	4	100-400	0.72-360	170-800

2、性能特点: Performance and properties:

(1) 齿轮均采用优质低碳合金钢, 渗碳, 淬火, 齿轮精度6级。

(2) 精度高,效率高,传动平稳,噪音低,比调质齿轮减速器(QJ系列)体积小、重量

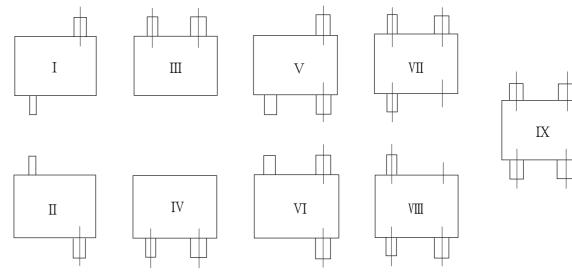
轻、承载能力大、可靠性高。

- (3) 焊接箱体结构。安装形式:三支点安装和地脚安装。
- (4) 轮出轴型式; 平键, 渐开线花键, 齿轮轴端, 空心轴四种。
- (5) 一般采用油池润滑,自然冷却,立式减速器采用循环油润滑。
- (6) 采用滚动轴承。

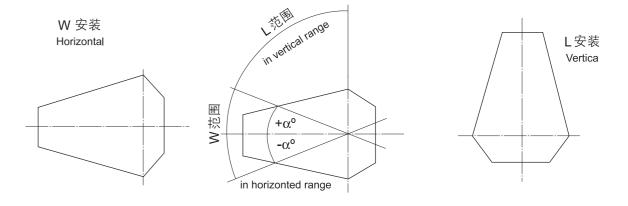
(1) All gears are made of quality low-carbon alloy steel and treated with cementite and quenching, gear precision up to Class 6.

(2) High precision, high efficiency, stable driving, low noise, smaller than hardening and tempering gears (QJ series), light weight, high carrying capacity, high reliability.

- (3) Welded cabinet structure. Installation method: 3-supporting-point and anchor bolt.
- (4) Output shaft type: 4 type of flat key, involute spline, gear shaft end and hollow shaft


(5) Oil sump lubrication is normally used, natural cooling, circulating oil lubrication is used for vertical decelerator.

(6) Rolling bearing is used.


应用范围: Application:

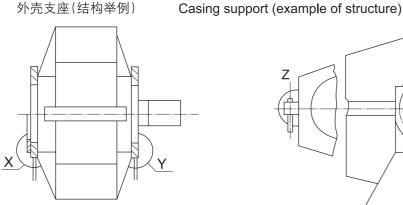
- 1、输入转速一般 n1 ≤ 1500r/min。
- 2、工作环境温度-40~+50℃。
- 3、正反两向运转。 适合各种类型起重机减速器选用。
- 1. Input rotating speed is usually n1 ≤ 1500r/min.
- 2. Working ambient temperature is $-40 \sim +50^{\circ}C$.
- 3. Both forward and backword operation are available. Suitable for various type of decelerators for hoist

4、安装型式: Installation method QJYD2、QJYD3、QJYD23、QJYD34 型采用地脚安装。 QJY2、QJY3、QJY23、QJY34型式采用三支点支承安装。(安装方式见图 15) 允许有卧式W或立式L两种方式。(见图 14) Anchor bolt installation is used for type QJYD2, QJYD3, QJYD23, QJYD34. and QJY34. (See figure 15 for installation method). Horizontal W and vertical L are available. (See figure 14)

QJY2, QJY3, QJY23, QJY34 QJYA2, QJYA3, QJYA23, QJYA34 安装型式 图 14 Figure 14 Installation method for type QJY2, QJY3, QJY23, QJY34, QJYA2, QJYA3, QJYA23, QJYA34 注: α° 角的度数与传动比有关,当减速倾斜 α 角时,应保证使中间级大齿轮浸油1~2个齿高深度(α° 具体数据由

用户自定)

Note: The value of angle & relates to transmission ratio. When there is a reducing slope of α , the middle-stage big gear should infuse 1-2 tooth depth of lubricating oil. (value of α is determined by user)


TAILONG MACHINERY

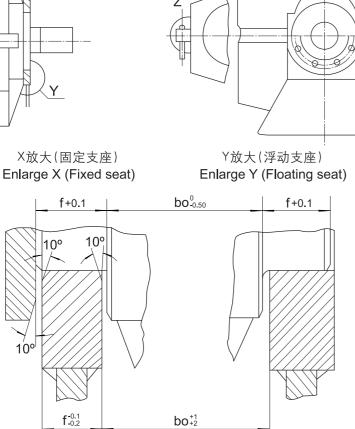

图 13 减速器装配型式

Figure 13 Decelerator installation method

3-supporting-point for carrying installation method is used for type QJY2, QJY3, QJY23

QJY2、QJY3、QJY23、QJY34 型减速器支承型式见图 15 See Figure 15 for the supporting method of type QJY2, QJY3, QJY23 QJY34 decelerators

Z放大 Enlarge Z

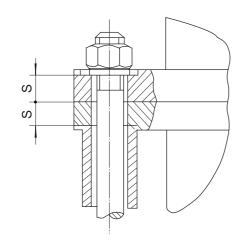


图 15 QJY2、QJY3、QJY23、QJY34 支承型式 Figure 15 Supporting method of type QJY2, QJY3, QJY23, QJY34

- 5、轴端型式 Shaft end mode 高速轴端采用圆柱轴伸平键联接。 输出轴端 P——圆柱轴伸平键, 单键联接; H——圆柱轴伸渐开线花键联接; **C**——齿轮轴端(仅用于中心距为 **170-560mm** 的减速器)。 轴端结构型式和尺寸参数见图 16 和表 15 Cylinder shaft extension flat key connection is used for high-speed shaft end. Output shaft end: P ---- cylinder shaft extension flat key, single key connection

 - distance of 236-560mm)
 - See Figure 16 and Table 15 for shaft end structure mode and dimension

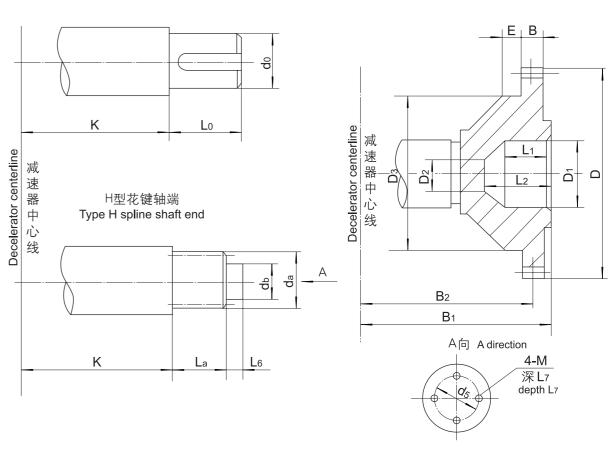


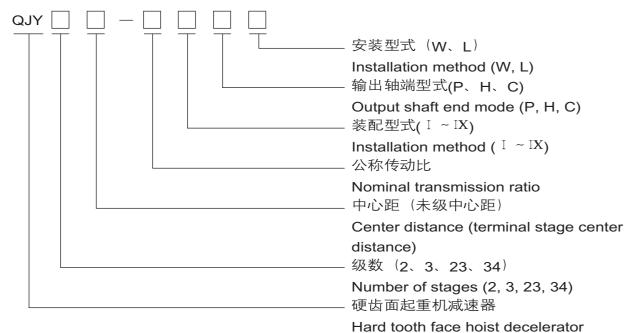
图 16 输出轴端型式 Figure 16 Output shaft end mode

TAILONG MACHINERY

H —— cylinder shaft extension involute spline connection C ----- gear wheel shaft end (only for the decelerator with center

C型齿轮轴端 Type C gear wheel shaft end

表 15 输出轴端尺寸参数表 Table 15 Output shaft end dimension parameters

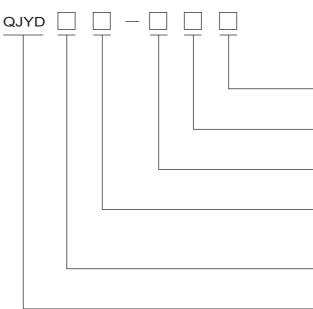

名 义 中心距		P 型 ⁻	Гуре Р				() 型	Туре С								Н₫	빌 Ty	be H			
Nominal center distance	K	d ₀ (r ₆)	L _o	mXz	D	D ₁ (H ₇)	D_2	D ₃	B ₁	B ₂	В	Е	L ₁	L_2	mXz	d _a (h ₁₁)	L_{a}	d_5	М	d _b (k ₆)	L ₆	L ₇
140	155	65	105												3X20	65	35	40	8	60	30	16
170	165	75	140	3X56	174	90	40	135	279.5	253	25	25	45	60	3X24	75	40	50	8	70	35	16
200	195	95	170	4X56	232	120	40	170	339.5	308	35	25	50	75	5X18	95	50	60	8	80	40	16
236	225	110	210	4X56	232	120	40	170	339.5	308	35	25	50	75	5X21	110	55	70	10	100	45	20
280	250	130	200	6X56	348	170	45	260	402	370	40	32	76	100	5X25	130	70	90	10	120	50	20
335	280	140	250	6X56	348	170	45	260	429	397	40	32	76	100	5X27	140	75	100	12	140	55	25
370	310	170	300	7X56	406	180	50	260	450	419	50	32	76	100	5X33	170	75	100	12	140	55	25
400	340	180	300	8X54	448	200	105	260	482	442	50	32	78	100	5X35	180	85	120	12	160	60	25
450	375	210	350	10X48	500	200	105	280	570	505	60	35	78	100	5X41	210	95	140	12	180	60	25
500	410	240	410	10X58	600	250	110	320	650	575	70	40	80	105	8X29	240	105	160	12	190	65	25
560	460	260	410	10X58	600	250	110	320	650	575	70	40	80	105	8X31	256	120	180	16	220	65	32
630	495	300	470												8X36	296	135	200	16	250	65	32
710	565	320	550												8X39	320	150	220	20	280	75	40
800	645	360	550												8X44	360	170	250	20	320	80	40

*键槽按GB1095-79 *Keyway is in accordance with GB1095-79

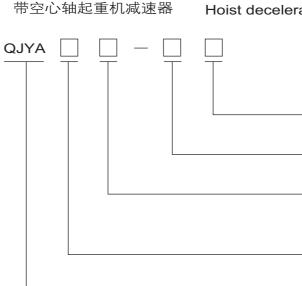
6、代号示例 Example of denotation

三支点支承起重机减速器;

3-supporting-point carrying hoist decelerator



标记示例: Example of notation:


起重机减速器三级传动,名义中心距a,=500mm,公称传动比50,装配型式第Ⅲ种,输 出轴端为齿轮轴端,卧式安装则标记为:QJY3500-50 Ⅲ CW。

Hoist decelerator with 3-stage transmission, nominal center distance is a₁=500mm, nominal transmission ratio is 50, installation method is III, output shaft end is gear shaft end, and horizontal installation is used, so the denotation is QJY3500-50 III CW.

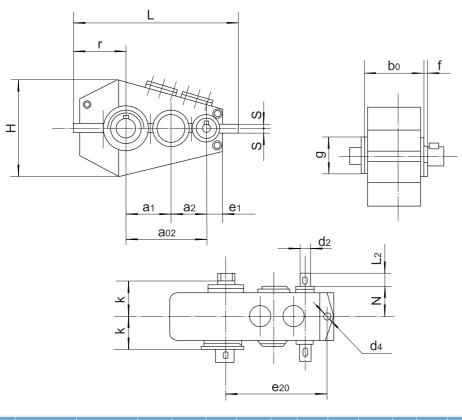
带底座起重机减速器

起重机减速器二级传动,名义中心距a,=500mm,公称传动比i=20,第Ⅳ种装配型式,轴 端型式为 P 型的标记为: QJYD2500-20 Ⅳ P。 Hoist decelerator with 2-stage transmission, nominal center distance is a₁=500mm, nominal transmission ratio is i=20, installation method is IV, shaft end type is P, so the denotation is QJYD2500-20 IV P.

TAILONG MACHINERY

Hoist decelerator with base frame

 输出轴端型式(P、H、C)
Output shaft end mode (P, H, C) .装配型式(Ⅰ~Ⅸ)
Installation method (^I ~ ^{IX}) . 公称传动比
Nominal transmission ratio 中心距(未级中心距)
 Center distance (terminal stage center distance) 级数(2、3、23、34)
Number of stages (2, 3, 23, 34) . 硬齿面起重机减速箱
Hard tooth face hoist reduction gearbox

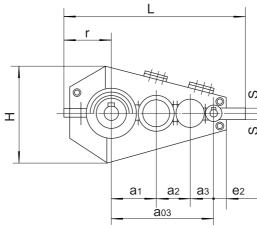

Hoist decelerator with hollow shaft

装配型式(V、VI、IX除外)
Installation method (except ^V , ^{VI} and ^{IX}) 公称传动比
Nominal transmission ratio 中心距(未级中心距)
Center distance (terminal stage center distance) 级数 ⁽ 2、3、23、34 ⁾
→ 奴奴 (2、3、23、34) Number of stages (2, 3, 23, 34) ● 硬齿面起重机减速箱
Hard tooth face hoist decelerator reduction gearbox

7、外形、安装尺寸 External and installation dimension

1) 表 16 QJY2、QJYA2 减速器外形及安装尺寸 (mm)

Table 16: External and installation dimension for type QJY2, QJYA2 decelerator (mm)

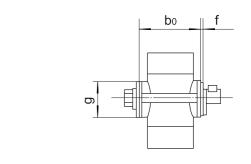


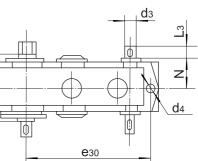
名义中心距			i=6.3 -	~ 11.2	i=12.	5~20				b _o	f	g							重量
a ₁ Nominal center distance	a ₂	a ₀₂	d _{2r6}	L ₂	d _{2r6}	L ₂	L	Н	K	-0.5	+0.1	h9	d ₄	e ₂₀	S	r	e ₁	N	Weight (kg)
140	100	240	32	58	28	60	555	320	155	240	18	180	18	355	17	170	85	135	80
170	118	288	42	58	32	58	655	410	165	255	18	220	22	420	22	202	106	140	115
200	140	340	48	82	38	58	758	455	195	275	20	250	26	495	27	232	117.5	180	210
236	170	406	60	105	48	82	890	518	225	320	20	270	26	590	27	272	142	210	330
280	200	480	65	105	55	90	1035	584	250	370	25	320	33	685	32	314	155	235	520
			i=6.3	~ 12.5	i=14	~20													
			d _{2r6}	L_2	d_{2r6}	L_2													
335	236	571	80	130	65	105	1225	735	280	420	25	350	39	810	37	375	180	260	780
370	260	630	85	140	70	105	1350	804	310	480	25	400	39	895	37	410	190	280	950
400	280	680	90	170	80	130	1470	867	340	530	30	400	45	975	37	447	215	310	1350
450	320	770	100	180	85	130	1645	990	375	580	30	480	45	1090	42	506	240	350	1760
500	360	860	110	180	95	170	1805	1130	410	650	40	530	52	1200	42	554	260	370	2500
560	400	960	120	210	110	180	1995	1270	460	700	40	580	52	1315	47	626	265	390	3450
630	450	1080	140	250	120	210	2236	1380	495	770	40	600	62	1470	47	704	295	440	4800
710	500	1210	160	300	140	250	2518	1540	565	875	50	650	62	1660	55	781	335	520	6800
800	560	1360	180	300	160	300	2834	1780	645	1020	60	770	70	1870	55	880	375	575	9400
* 钟樯坨								+ 17						1005	70				

^{*}键槽按GB1095-79 ** QJYA2 空心轴有关尺寸见表 24

* Keyway in accordance with GB1095-79 ** Hollow shaft dimensions see talbe 24

QJY3、QJYA3 减速器外形及安装尺寸 (mm) 2)表17

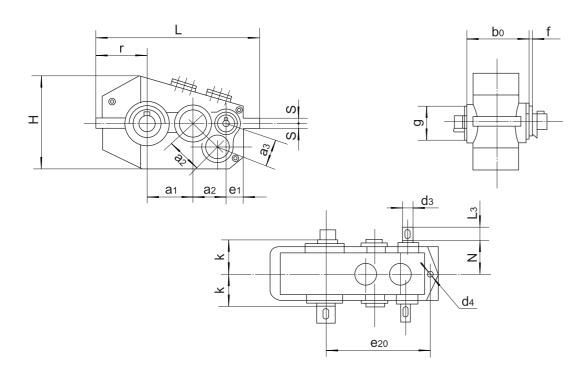

名义 中心距 a ₁			i=22.	4~71	i=80 -	~ 100			N		b _o	f	g	- A		0			重量
Nominal center distance	a ₂	a ₃	d _{3r6}	L ₃	d _{3r6}	L ₃	L	н	N	K	-0.5	+0.1	h9	d ₄	е ₃₀	S	r	e ₂	Weight (kg)
170	118	85	25	42	20	36	730	410	140	165	255	18	220	22	495	22	202	85	150
200	140	100	32	58	22	36	832	455	180	195	275	20	250	26	570	27	232	95	230
236	170	118	38	58	28	60	976	518	210	225	320	20	270	26	675	27	272	115	370
280	200	140	48	82	38	80	1164	584	235	250	370	25	320	33	790	32	314	120	600
			i=20	~56	i=63 -	~ 100													
			d _{3r6}	L_3	d _{3r6}	L ₃													
335	236	170	55	82	42	82	1360	735	260	280	420	25	350	39	945	37	375	142	870
370	260	185	60	105	48	82	1495	804	280	310	480	25	400	39	1030	37	410	150	1080
400	280	200	65	105	55	90	1602	867	310	340	530	30	400	45	1100	37	447	155	1500
450	320	225	70	105	60	105	1801	990	350	375	580	30	480	45	1240	42	506	175	1950
500	360	250	80	130	65	105	1990	1130	370	410	650	40	530	52	1380	42	554	200	2750
560	400	280	95	170	75	120	2260	1270	390	460	700	40	580	52	1575	47	626	235	3850
630	450	320	110	180	85	130	2540	1380	440	495	770	40	600	62	1775	47	704	255	5400
710	500	360	120	210	90	170	2840	1540	520	565	875	50	650	62	1995	55	781	295	7400
800	560	400	140	250	100	180	3190	1780	575	645	1020	60	770	70	2230	55	880	335	10300
*键槽按				+ □ 恚	24				,		ordanc								


** QJYA3 空心轴有关尺寸见表 24

** Hollow shaft dimensions see talbe 24

TAILONG MACHINERY -

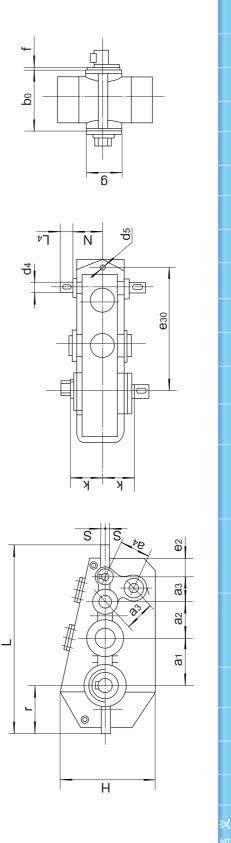
Table 17: External and installation dimension for type QJY3, QJYA3 decelerator (mm)



TAILONG MACHINERY

3) 表 18 QJY23、QJYA23 减速器外形及安装尺寸 (mm)

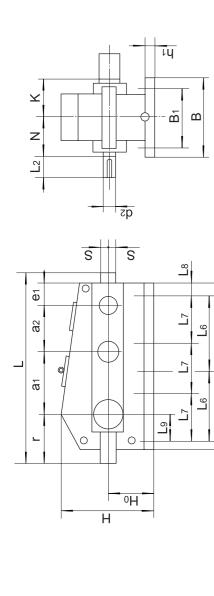
Table 18: External and installation dimension for type QJY23, QJYA23 decelerator (mm)



名义 中心距 a ₁			i=22.4	4~71	i=80 -	~ 100					b _o	f	g						重量
Nominal center distance	a ₂	a ₃	d _{3r6}	L ₃	d _{3r6}	L ₃	L	н	N	K	-0.5	+0.1	h9	d ₄	S	e ₂₀	r	e ₁	Weight (kg)
170	118	85	25	42	20	36	655	420	140	165	255	18	220	22	22	420	202	95	150
200	140	100	32	58	22	36	758	446	180	195	275	20	250	26	27	495	232	195	240
236	170	118	38	58	28	60	890	500	210	225	320	20	270	26	27	590	272	125	370
280	200	140	48	82	38	80	1035	562	235	250	370	25	320	33	32	685	314	145	580
			i=20	~56	i=63-	~ 100													
			d _{3r6}	L_3	d _{3r6}	L_3													
335	236	170	55	82	42	82	1225	710	260	280	420	25	350	39	37	810	375	180	880
370	260	185	60	105	48	82	1350	770	280	310	480	25	400	39	37	895	410	190	1100
400	280	200	65	105	55	90	1470	836	310	340	530	30	400	45	37	975	447	215	1550
450	320	225	70	105	60	105	1645	980	350	375	580	30	480	45	42	1090	506	240	2050
500	360	250	80	130	65	105	1805	1060	370	410	650	40	530	52	42	1200	554	260	2800
560	400	280	95	170	75	120	1995	1240	390	460	700	40	580	52	47	1315	626	265	3900
630	450	320	110	180	85	130	2236	1370	440	495	770	40	600	62	47	1470	704	295	5550
710	500	360	120	210	90	170	2518	1530	520	565	875	50	650	62	55	1660	781	335	7700
800	560	400	140	250	100	180	2834	1760	575	645	1020	60	770	70	55	1870	880	375	10400

^{*}键槽按GB1095-79

** QJYA23 空心轴有关尺寸见表 24


* Keyway in accordance with GB1095-79 ** Hollow shaft dimensions see talbe 24

4) 表 19 QJY34、QJYA34 减速器外形及安装尺寸 (mm) Table 19: External and installation dimension for type QJY34, QJYA34 decelerator (mm)

Ū													2	_				7		0			1010i0t
Nominal	0 2	ຮິ	ช	ס							J	-	z	۷	-0.5	+0.1	٩	24	30 €	0		~ Ŭ	vveigin. (ka)
center distance					d _{4r6}	4	d _{4r6}	4	d _{4r6}	4													(B.)
170	118	85	63		20	35	20	35	16	30	730	420	140	165	255	18	220	22	485		202	85	175
200	140	100	70	510	22	35	22	35	20	35	832	440	180	195	275	20	250	26	570	27	232	95	270
236	170	118	06		25	40	25	40	22	35	976	500	210	225	320	20	270	26	665		272	103	400
280	200	140	100		28	50	28	50	25	40	1164	562	235	250	370	25	320	33	790		314	115	620
335	236	170	118		35	60	28	50	25	40	1360	710	260	280	420	25	350	39	935		375	135	006
370	260	185	130		38	70	35	60	28	50	1495	770	280	310	480	25	400	39	1030	37	410	150	1130
400	280	200	140		42	70	38	70	35	60	1602	836	310	340	530	30	400	45	1100	37	447	155	1570
450	320	225	160		48	80	42	70	38	70	1801	980	350	375	580	30	480	45	1230	42	506	175	2030
					i=100 -	~ 180	i=200	~ 250	i=280.	~400													
					d_{4r6} L ₄	L ₄	d_{4r6}	L ₄	d_{4r6}	L_4													
500	360	250	180		48	80	42	70	38	70	1990	1060	370	410	650	40	530	52	1370	42			2850
560	400		200		60	105	55	06	48	80	2260	1240	390	460	700	40	580	52	1550		626	225	3950
630	450	320	225		65	105	60	105	48	80	2540	1370	440	495	770	40	600	62	1750	47			5500
710	500	360	250		75	120	65	105		06	2840	1530	520	565	875	50	650	62	1950	55			7600
800	560	400	280	2040	80	140	20	120	65	105	3190	1760	575	645	1020	60	770	20	2200	55			10500
* 键槽按 GB1095-79 ** QJYA34 空心轴有关尺寸见表 24	GB109 34	15-79 、轴有∋	é尺寸J			* *	* Keyw	ay in a w shaf	ccorda ft dime	nce wi nsions	* Keyway in accordance with GB1095-79 ** Hollow shaft dimensions see talbe 24	095-79 be 24	•										

表 20 QJYD2 减速器外形及安装尺寸 (mm) Table 20: External and installation dimension for type QJYD2 decelerator (mm) 5) 表 20

Ľ

	Veight (kg)	100	141	260	406	340			959	169	645	328	3230	370	080	360	1875	
	` ≤ ס				M20 4								M42 3				`	
	6				177 M								340 M					
		`																
	L ₇ L ₈	- 37	4	- 52	- 65	. 80							440 140					
	ے س	00	45	80	350	80				10		- 4		۰ 4	ů ,	ن ۱	õ	
	۵				350 3								710	06	20	50	140	
	ć				40 3								100 7				`	
	ഫ				405								830					
	-				830 4								1600 8					
	r				250 8								560 1(
					210 2					-	-							
	z												0 370					95-79 0.74
					182								260					syway in accordance with GB1095-7
					272								554					with
	လ				27								42					lance
	×				225								410					accord
	T	320	410	452.5	509	607			722.5	802	933.5	995	1125	1265	1400	1570	1790	ay in a
		515	655	714	890	978			1225	1350	1404	1582	1748	1942	2178	2432	2730	Keyway in accordance with GB1095-79
~ 20	۲ ۲						20											* *
i=6.3~11.2 i=12.5~20	d _{2r6}	28	32	38	48	55	$i=14 \sim$	d _{2r6}	65	70	80	85	95	110	120	140	160	
	۲- 2						12.5											
$5.3 \sim 1$	d _{2r6}						$=6.3 \sim 1$											-
																		0 ₩
	a 02				0 406												0 1360)95-7 문 수 묘
	³ 3		118	14(170	20(23(26(28(32(360	40(45(50(56(GB10 有半
中 小 田 a	Nominal center distance	140	170	200	236	280			335	370	400	450	500	560	630	710	800	*键槽按 GB1095-79 ** 空心轴有羊尺寸回表 34

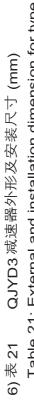
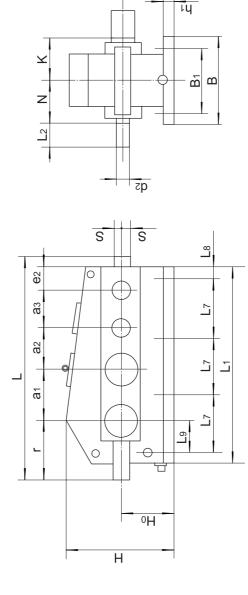
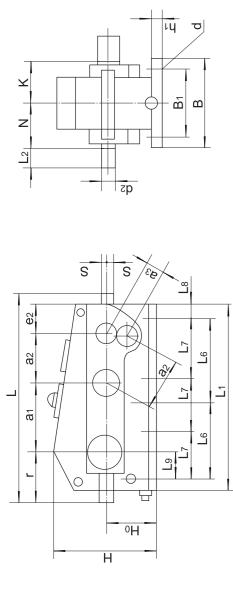



表 21 QJYD3 减速器外形及安装尺寸 (mm) Table 21: External and installation dimension for type QJYD3 decelerator (mm)



TAILONG MACHINERY

											-	2													町町
Nominal center		a ₂	ຕິ	ື່ສ ⁰³	7	-	τ	-	_	I	z	×		e G	ິນ	Ĕ	ī	m	ć	 ກັ	L7	°.	6	σ	Neight (kg)
distance	ee				U2r6	۲ ۲	U 2r6	2																	5
170			85	373	25	42	20	36	724	410	140	165	202	119.5	22 2	200 6	665 3	315	32 2	260 1	190 4	47.5		M16	230
200			100	440	32	58	22	36	794	452.5	180	195	232	97.5	27 2	225 7	745 3		40 3		210 5	57.5	150 1	120	270
236		170 、	118	524	38	58	28	60	976	509	210	225	318	63.5	27 2	250 8	835 4	445 4	40 3	380 2		'2.5	175 1	M20	604
280				620	48	82	38	80	1105	607	235	250	325	120	32 3	315 1(1025 5	500	50 4	430 2	285	85	200	124	715
					i=20 -	~ 56	i=63~	~ 100																	
					d_{2r6}	L_2	d_{2r6}	L ₂																	
335			170	741	55	82	42	82	1265	722.5	260	280	375	79	37 3	355 1	1125 5	540 (63 4	480 3	315	06	215 1		1560
370		260		815	60	105	48	82	1380	802	280	310	410	97	37 4	400 1;	1264 6	610 (63 5	540 3	-	107	245 1	M30	1715
400				880	65	105	55	06	1544	933.5	310	340	447	155	37 4	450 14	1420 6	8 069	80 5	590 4		110			1852
450		320 2	225	995	70	105	60	105	1742	995	350	375	506	175	42 5	500 1(1610 7	750 8	80 6	650 4	450	130			2517
500			250	1110	80	130	65	105	1938	1125	370	410	554	200	42 5	560 1	1790 8	830 1	100 7	710 5	200	145	335 1		3610
560		400 2	280	1240	95	170	75	120	2190	1265	390	460	626	235	47 6	630 2(2010 9	910 1	100 7	790 5	260	165	370 1	M42 ,	4845
630			320	1400	110	180	85	130	2458	1400	440	495	704	255	47 7	710 22	2260 10	1030 1	125 8	890 6	630	185	420		6840
710			360	1570		210	06	170	2752	1570	520	565	781	295	55 8	800 2!	2540 1	1160 1	125 1(1000 7	710 2	205	470 1	•	10260
800		560 4	400	1760	140	250	100	180	3100	1790	575	645	880	335	55 9	900 28	2850 1	1320 1	160 1	1140 8	800	225	530 1	M56 1	13300
* 键槽按 GB1095-79 ** 空心轴有关尺寸见表 24	谤 GB 轴有∋	1095- 美尺√	-79 †见表	24			-	* Keyw ** Hollc	* Keyway in accordance with GB1095-79 ** Hollow shaft dimensions see talbe 24	ccorda f dimer	nce w 1sions	ith GB see t	:1095- albe 2	79 4											

QJYD23 减速器外形及安装尺寸 (mm) 7) 表 22

中 心 田 a				i=22.4	i=22.4~71	i=80~100	100			2							ſ							重
Nominal center distance	σ	ີ່ຫ	a ⁰³	d _{2r6}	-2	d _{2r6}	L2	_	I	×	ю		Ģ	z	r	J	n	ć	'n	9	-		σ	Weight (kg)
170	118	85	373	25	42	20	36	655	420	165	22	202	127	140 2	205 5	580	300	32 2	250 2	245	4	45 120) M16	141
200		100	440	32	58	22	36	714	445	195	27	232 1	117.5	180 2	225 6	665	355	40 3	300 2	280	- 52	52.5 155		260
236	170	118	524	38	58	28	60	890	500	225	27	272	182		250 8	830 4	405	40 3	350 3	350	9	65 177	7 M20	406
280	200	140	620	48	82	38	80	978	562	250	32	314	145	235 3	315 9	920		50 4	430	380	00	80 205		640
				i=20 ~	~ 56	i=63 ~	, 100																	
				d_{2r6}	L ₂	d_{2r6}	L_2																	
		170	741	55	82	42	82	1225	710	280	37 3	375 2	211.5	260 3	355 1	1090 8	550	63 5	505 4	450	6 1	95 212.5	5 M30	959
		185	815	60	105	48	82	1350	770	310	37 4	410 2	228.5	280 4	400 1	1187 (620	63 5	520 49	493.5	- -	100 228.5	5 M30	1169
		200	880	65	105	55	06	1404	836	340	37 4	447 2	215	310 4	450 1	1280 6	690	80 5	590 5	520	÷	120 265		1645
450	320 2	225	995	70	105	60	105	1582	980	375	42	506	240		500 1	1450 7	750	80 6	650	4	400 12	125 315	5 M36	2328
500	360 2	250	1110	80	130	65	105	1748	1060	410	42	554 2	260		560 1	1600 8	830	100 7	710	4	440 1	140 340		3230
560	400 2	280	1240	95	170	75	120	1942	1240	460	47	626 2	265	390 6	630 1	1760 §	910	100 7	790	4	490 1	145 390		4370
630	450 3	320	1400	110	180	85	130	2178	1370	495	47	704	295	440 7	710 1	1980 1	1010	125 8	870	ù I	540 18	180 425		6080
710	500	360	1570	120	210	90	170	2432	1530	565	55	781	335	520 8	800 2	2220 1	1100	125 9	950	9	610 19	195 480) M48	8360
800	560 4	400	1760	140	250	100	180	2730	1760	645	55 8	880	375	575 9	900 2	2500 1	1320	160 1	1140	0 ۱	680 23	230 535	5 M56	11875
* 键槽按 GB1095-79 ** 空心轴有关尺寸见表 24	5 B109 有关尺	35-79 3寸见	表 24				* Xe	* Keyway in accordance with GB1095-79 ** Hollow shaft dimensions see talbe 24	n acco naft dii	rdance nensie	e with ons s	GB1(ee tall	095-79 be 24	0										

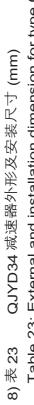
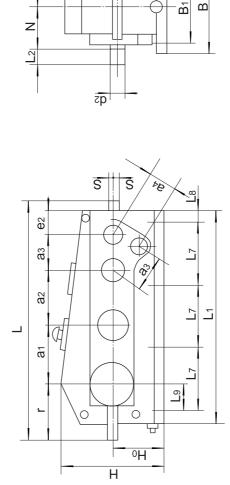



Table 23: External and installation dimension for type QJYD34 decelerator (mm)

 \mathbf{X}

۶ų

	2 2 1			-	Z	2			C	-		C		C					画画
2	d_{2r6}	L ₂	-	E	z	<	_	e ²	n	r	ĩ	۵	ć	ก์	-7	L ₇ L ₈	Ĵ	σ	Weight (kg)
35	16	30	724	405	140	140 165	202	119.5 22		200	665	315	32	260	190	47.5	125	M16	230
35	20	35	794	452.5	180	180 195	232	97.5	27	225	745	355	40	300	210	57.5	150	M20	270
40	22	35	976	509	210	225	318	63.5	27	250	835	445	40	380	230	72.5	175	M20	640
50	25	40	1105	607	235	250	325	120	32	315	1025	500	50	430	285	85	200	M24	715
50	25	40	1265	722.5	260	280	375	79	37	355	1125	540	63	480	315	06	215	M30	1560
60	28	50	1380	802	280	310	410	97	37	400	1264	610	63	540	350	107	245	M30	1715
70	35	60	1544	933.5	310	340	447	155	37	450	1420	690	80	590	400	110	275	M36	1852
70	38	70	1742	995	350	375	506	175	42	500	1610	750	80	650	450	130	310	M36	2517
250	i=280~400	~ 400																	
L 2	d_{2r6}	L ₂																	
20	38	70	1938	1125	370	410	554	200	42	560	1790	830	100	710	500	145	335	M42	3610
06	48	80	2190	1265	390	460	626	235	47	630	2010	910	100	790	560	165	370	M42	4845
105	48	80	2458	2458 1400 440	440	495	704	255	47	710	47 710 2260 1030		125	890	630	185	420 M48	M48	6840

=200

180

i=100

35 35 35 35 40 50 60 60 70 70 80

20 22 25 25 25 28 35 35 35 38 38 38 38 48

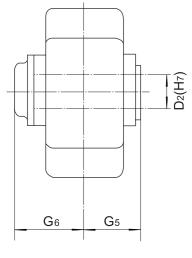
436 510 614 720 859 945 1120

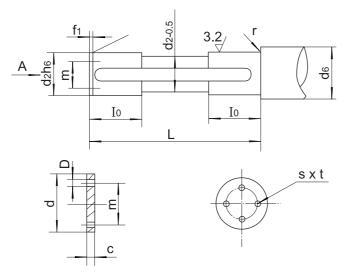
63 70 90 1100 118 130 140

85 100 118 140 170 185 220 225

118 140 170 200 236 236 260 280 320

170 200 236 280 335 370 450


ື່ອ


TAILONG MACHINERY -

9) 表 24 空心轴型减速箱(键联接)的连接尺寸

Table 24: External and installation dimension of hollow shaft type decelerator (key connection) (mm)

> 工作机轴上联接部分的尺寸 Dimension of the upper connection of the working machine shaft

							轴站	尺寸									
齿轮箱	重型号 Gearl	pox type		空心轴					工作机	轴					햐	耑板	
QJYA2	QJYA3 QJYA23	QJYA34	Н	ollow sha	aft				ng mach		aft					d plate	
规	格 Specifica	tion	D_2	G ₅	G_6	d ₂	d ₆	f ₁	L	l _o	r	S	t	С	D	d	m
140			70	146	184	70	80	4	290	40	2.5	10	17	8	11	86	50
170	170	170	90	155	195	90	100	4	308	40	2.5	10	17	10	11	100	60
200	200	200	100	167	207	100	110	5	332	50	4	10	17	10	11	120	70
236	236	236	120	190	232	120	130	5	378	50	4	12	20	12	14	140	80
280	280	280	140	215	257	140	150	5	428	65	4	12	20	12	14	160	90
335	335	335	160	245	298	160	170	6	488	65	4	12	20	23	14	180	90
370	370	370	180	275	328	180	190	6	548	75	4	12	20	23	14	200	90
400	400	400															
450	450	450															
500	500	500				4+ 74	стан.	1+ <u>7</u> # '			-1+-1	÷n : - 1					
560	560	560		_					设计请-								
630	630	630		F	or specia	al order a	and desig	gn, ple	ease con	tact ou	ir techr	nal de	partme	ent for (details		
710	710	710															
800	800	800															
键槽按G	B1095-79				ł	Keyway	y in acc	corda	ance w	ith G	B109	5-79					

8、许用功率表 Table of allowed power

1) 表 25 QJY2、QJYD2、QJYA2 高速轴许用功率表 Table 25: Allowable power for type QJY2, QJYD2, QJYA2 high-speed shaft

名义 中心距 Nominal	输 出 扭 矩	输入 轴转速 Input shaft				公称传	动比i	Nominal tra	ansmissio	n ratio i			
center	Output torque	rotating	6.3	7.1	8	9	10	11.2	12.5	14	16	18	20
distance (mm)	(Nm)	speed (r/min)						P Allowe					
()		750	19.4	17.2	15.3	13.6	12.2	10.9	9.8	8.7	7.7	6.8	6.1
140	1550	1000	25.9	23	20.4	18	16.3	14.6	13	11.7	10.2	9	8.2
		1500	38.8	34.5	30.6	27.2	24.5	21.8	19.6	17.5	15.3	13.6	12.2
		750	32.2	28.6	25.4	22.5	20.3	18	16.2	14.5	12.7	11.3	10
170	2585	1000	42.9	38.1	33.8	30	27	24	21.6	19.3	16.9	15	13.5
		1500	64.4	57.2	50.7	45	40.6	36.2	32.5	29	25.4	22.5	20.3
		750	62.8	55.7	49.4	43.9	39.5	35.3	31.6	28.2	24.7	22	19.8
200	5035	1000	83.7	74.3	65.9	58.6	52.7	47	42.2	37.7	35	29.3	26.4
		1500	125.5	111.4	98.9	87.9	79	70.6	63.3	56.5	49.4	43.9	39.5
		750	106.6	94.6	83.9	74.6	67.1	60	53.7	48	42	37.3	33.6
236	8550	1000	142.1	126	111.9	99.5	89.5	79.9	71.6	63.9	56	49.7	44.8
		1500	213.2	189	167.9	149.2	134.3	119.9	107.4	95.9	83.9	74.6	67.1
		750	177.6	157.6	139.9	124.3	111.9	99.9	89.5	79.9	69.9	62.2	56
280	14250	1000	236.8	210	186.5	165.8	149.2	133.2	119.4	106.6	93.3	82.9	74.6
		1500	355.3	315.2	279.8	248.7	223.8	199.8	179	159.9	139.9	124.3	111.9
		750	296	262.7	233	207.3	186.5	166.5	149.2	133.2	116.6	103.6	93.3
335	23750	1000	394.7	350.3	311	276.3	248.7	222	199	177.6	155.4	138	124.3
		1500	592	525.4	466.3	414.5	373	333	298.4	266.5	233	207	186.5
		750	391	347	308	273.8	246.5	220	197.2	176	154	136.9	123.2
370	31380	1000	521.6	462.8	410.7	365	328.6	293.4	262.9	234.7	205.4	182.6	164.3
		1500	782	694.2	616	547.7	492.9	440	394	352	308	273.8	246.4
100	10000	750	502	445.6	395.4	351.5	316.3	282.4	253	226	197.7	175.7	
400	40280	1000	669.5	594	527.2	468.6	421.8	376.6	337.4	301.3	263.6	234.3	
		1500	1004	891	790.8	703	632.7	564.9	506	451.9	395.4	351.5	
450	57000	750	710.6	630.5	559.6	497.4	447.7	399.7	358	319.8	279.8	248.7	
450	57000	1000	947.4	841	746	663	597	532.9	477.5	426	373	331.6	
		1500	1421	1261	1119	995 704 G	895	799.4	716.2	639.5	559.6	497.4	
500	80750	750 1000	1007 1342	893 1191	792.7	704.6 939.5	634 845.5	566 755	507	453 604	396.4 528.5	352 469.7	
500	00750	1500	2013	1786	1057 1585	1409	1268	1132	676.4 1014.7	906	792.7	704.6	
		750	1421	1261	1119	994.8	895	799.4	716	900 639.5	559.6		
560	114000	1000	1895	1681	1492	1326	1194	1065.8	955	853	746	497 663	
500	114000	1500	2842	2522	2238	1989.5	1791	1598.7	1433	1279	1119	994.8	
		750	2012	1786	1585	1409	1268	1132	1014.7	906	792.7	704.6	
630	161500	1000	2684	2382	2113.9	1879	1691	1510	1353	1208	1057	939.5	
000	101000	1500	2004	2002	2110.0	1070	1001	1010	1000	1812	1585	1409	
		750	2795	2480	2201	1956	1761	1572	1409	1258	1105	978	
710	224200	1000	3726	3307	2935	2608	2348	2096	1878	1677	1467	1304	
. 10	00	1500	0.20	0001	2000	2000	2010	2000		2515	2201	1956	
		750	4027	3573	3171	2819	2537	2265	2029	1812	1585	1409	
800	323000	1000	5369	4764	4228	3758	3382	3020	2706	2416	2114	1879	
		1500											
·· 1/- 477													

* 工作级均为 M₅ Working stage is M₅ for all

TAILONG MACHINERY -

2) 表 26 QJY3、QJY23、QJYD3、QJYA3 高速轴许用功率表

Table 26: Allowable power for type QJY3, QJY23, QJYD3, QJYA3 high-speed shaft

名义 中心距 Nominal	输 出 扭 矩	输入 轴转速 Input shaft				公称	《传动比i	Nomina	l transmis	sion ratio	i			
center	Output torque	rotating	20	22.4	25	28	31.5	40	45	50	63	80	90	100
distance (mm)	(Nm)	speed (r/min)					许用功ጃ	容P Allov	wed powe	r P				
		750		9.06	8.12	7.25	6.44	5.07	4.5	4.05	3.22	2.54	2.25	2.03
170	2585	1000		12.1	10.8	9.7	8.6	6.8	6.0	5.4	4.3	3.4	3.0	2.7
		1500		18.1	16.2	14.5	12.9	10.1	9.0	8.1	6.4	5.1	4.5	4.1
		750		17.7	15.8	14.1	12.6	9.9	8.8	7.9	6.3	4.9	4.4	3.9
200	5035	1000		23.5	21.1	18.8	16.7	13.2	11.7	10.5	8.4	6.6	5.9	5.3
		1500		35.3	31.6	28.2	25.1	19.8	17.6	15.8	12.6	9.9	8.8	7.9
		750		29.98	269.9	23.9	21.3	16.8	14.9	13.4	10.7	8.4	7.5	6.7
236	8550	1000		39.96	35.8	31.97	28.4	22.4	19.9	17.9	14.2	11.2	9.9	8.95
		1500		59.95	53.7	47.96	42.6	33.6	29.8	26.9	21.3	16.8	14.9	13.4
		750		49.96	44.8	40.0	35.5	27.9	24.9	22.4	17.8	14.1	12.4	11.15
280	14250	1000		66.6	59.7	53.3	47.4	37.3	33.2	29.8	26.9	21.2	18.8	16.9
		1500		99.9	89.5	79.9	71.1	56.0	49.7	44.8	35.5	28.0	24.9	22.4
		750		83.3	74.6	66.6	59.2	46.6	41.4	37.3	29.6	23.3	20.7	18.7
335	23750	1000		111.0	99.5	88.8	78.9	62.2	55.3	49.7	39.5	31.1	27.6	24.9
		1500		166.5	149.2	133.2	118.4	93.3	82.9	74.6	59.2	46.6	41.4	37.4
		750		110.0	98.6	88.0	78.2	61.6	57.8	49.3	39.1	30.8	27.4	24.6
370	31380	1000		146.7	131.4	117.4	104.3	82.1	73.0	65.7	52.2	41.1	36.5	32.9
		1500		220.0	197.2	176.0	156.5	123.2	109.5	98.6	78.2	61.6	54.8	49.3
		750	158.2	141.2	126.5	113.0	100.4	79.1	70.3	63.6	50.2	39.5	35.1	
400	40280	1000	210.9	188.3	168.7	150.6	133.9	105.4	93.7	84.4	66.9	52.7	46.9	
		1500	316.3	282.4	253.1	226.0	200.8	158.2	140.6	126.5	100.4	79.1	70.3	
		750	223.8	199.8	179.1	159.8	142.1	111.9	99.5	89.5	71.1	56.0	49.7	
450	57000	1000	298.4	266.5	238.7	213.2	189.5	149.2	132.6	119.4	94.7	74.6	66.3	
		1500	447.6	399.7	358.1	319.7	284.2	223.8	199.0	179.1		111.9	99.5	
		750	317.1	283.1	253.7	226.5	201.3	158.5	140.9	126.8	100.7	79.3	70.5	
500	80750	1000	422.8	377.5	338.2	302.0	268.4	211.4	187.9			105.7		
		1500	634.2	566.2	507.3	453.0	402.6	317.1	281.8			158.5		
		750	447.6	399.7		319.7			199.0					
560	114000		596.9	532.9	477.5	426.3	379.0	298.4		238.7				
		1500	895.3	799.4	716.2	639.5	568.4	447.6		358.1				
	101500	750	634.2	566.2	507.3	453.0	402.6	317.1		253.7				
630	161500			754.9	676.4	604.0	536.9	422.8		338.2				
		1500			1014.7		805.3			507.3				
740	004000	750			704.3		559.0			352.1				
710	224200						745.3							
		1500					1117.9			704.3				
000	222000	750					805.3			507.3				
800	323000						1073.7							
·	7 4 년 사 -	1500				1011.9	1610.6	1200.3	1127.4	1014.7	000.3	034.2	303.7	
* 上作刻	及均为 M	5 Wor	king sta	ge is M _e	for all									

3) 表 27 QJY34、QJYD34、QJYA34 高速轴许用功率表 Table 27: Allowable power for type QJY34, QJYD34, QJYA34 high-speed shaft

名 义 中心距	输 出 扭 矩	输 入 轴转速				公称(专动比i	Nominal tr	ansmissior	n ratio i			
Nominal center	Output torque	Input shaft rotating	100	125	140	160	200	224	250	280	315	335	400
distance (mm)	(Nm)	speed (r/min)				ì	午用功率	P Allowe	d power P				
		750		1.623	1.45	1.27	1.01	0.91	0.81	0.72	0.64	0.61	0.51
170	2585	1000		2.16	1.93	1.69	1.35	1.21	1.08	0.97	0.86	0.81	0.68
		1500		3.25	2.90	2.54	2.03	1.81	1.62	1.45	1.29	1.21	1.01
		750		3.16	2.82	2.47	1.98	1.77	1.58	1.41	1.26	1.18	0.99
200	5035	1000		4.22	3.77	3.30	2.64	2.35	2.11	1.88	1.67	1.57	1.32
		1500		6.33	5.65	4.94	3.95	3.53	3.16	3.82	2.51	2.36	1.98
		750		5.37	4.80	4.20	3.35	2.30	2.69	2.40	2.13	2.00	1.68
236	8550	1000		7.16	6.39	5.60	4.48	3.00	3.58	3.20	2.84	2.67	2.24
		1500		10.74	9.59	8.39	6.71	6.00	5.37	4.80	4.26	4.01	3.36
		750		8.95	7.99	6.99	5.60	5.00	4.48	4.00	3.55	3.34	2.80
280	14250	1000		11.94	10.66	9.33	7.46	6.66	5.97	5.34	4.74	4.45	3.73
		1500		17.90	15.99	13.99	11.20	10.00	8.95	8.00	7.11	6.68	5.60
		750		14.92	13.3	11.7	9.3	8.3	7.5	6.7	5.9	5.6	4.7
335	23750	1000		19.9	17.8	15.5	12.4	11.1	9.9	8.9	7.9	7.4	6.2
		1500		29.8	26.6	23.3	18.7	16.7	14.9	13.3	11.8	11.1	9.3
		750		19.7	17.6	15.4	12.3	11.0	9.7	8.8	7.8	7.4	6.2
370	31380	1000		26.3	23.5	20.5	16.4	14.7	13.1	11.7	10.4	9.8	8.2
		1500		39.4	35.2	30.8	24.6	22.0	19.7	17.6	15.6	14.7	12.3
		750	31.6	25.3	22.6	19.8	15.8	14.1	12.7	11.3	10.0	9.4	7.9
400	40280	1000	42.2	33.7	30.1	26.4	21.0	18.8	16.9	15.1	13.4	12.6	10.5
		1500	63.2	50.6	45.2	39.5	31.6	28.2	25.3	22.6	20.1	18.9	15.8
		750	44.8	35.8	32.0	28.0	22.4	20.0	17.9	16.0	14.2	13.4	11.2
450	57000	1000	59.7	47.7	42.6	37.3	29.8	26.6	23.9	21.3	18.9	17.8	14.9
		1500	89.5	71.6	63.9	56.0	44.8	40.0	35.8	32.0	28.4	26.7	22.4
		750	63.4	50.7	45.3	39.6	31.7	28.3	25.4	22.6	20.1	18.9	15.9
500	80750	1000	84.6	67.6	60.4	52.8	42.3	37.7	33.8	30.2	26.8	25.2	21.1
		1500	126.8	101.5	90.6	79.3	63.4	56.6	50.7	45.3	40.3	37.9	31.7
		750	89.5	71.6	63.9	56.0	44.8	40.0	35.8	32.0	28.4	26.7	22.3
560	114000	1000	119.4	95.5	85.3	74.6	59.7	53.3	47.7	42.6	37.9	35.6	29.8
		1500	179.1	143.2	127.8	111.9	89.5	80.0	71.6	63.9	56.8	53.5	44.8
		750	126.8	101.5	90.6	79.3	63.4	56.6	50.7	45.3	40.3	37.9	31.7
630	161500	1000	169.1	135.3	120.8	105.7	84.6	75.5	67.6	60.4	53.7	50.5	40.3
		1500	253.7	202.9	181.2	158.5	126.8	113.2	101.5	90.6	80.55	75.7	63.4
		750	176.1	140.9	125.8	110.0	88.0	78.6	70.4	62.9	55.9	52.6	44.0
710	224200	1000	234.8	187.8	176.7	146.7	117.3	104.8	93.9	83.8	74.5	70.1	58.7
		1500	352.1	281.7	251.5	220.1	176.1	157.2	140.9	125.8	111.8	105.1	88.0
		750	253.7	202.9	181.2	158.5	126.8	113.2	101.5	90.6	80.5	75.7	63.4
800	323000	1000	338.2	270.6	241.6	211.4	169.1	151.0	135.3	120.8	107.4	101.0	84.6
		1500	507.3	405.8	362.4	317.1	253.1	226.5	202.9	181.2	161.1	151.4	126.8
16-4	7.45.4	\\/or											

* 工作级均为 M₅ Working stage is M₅ for all

46

TAILONG MACHINERY

4) 表 28 机构利用等级 Table 28: Degree of utilization of machanvism

机构利用分级 Degree of utilization	总设计寿命(h) Total life time of design	说明 Remark
T _o	200	
T ₁	400	不经常使用
T ₂	800	Not often use
T ₃	1600	
T_4	3200	经常轻闲使用 Often use light duty
Τ ₅	6300	经常中等使用 Often use medium duty
T ₆	12500	不经常繁忙使用 Not often use heavy duty
T ₇	25000	教修体田
Τ ₈	50000	繁忙使用 Heavy duty
T ₉	100000	neavy duty

5) 表 29 机构工作级别

Table 29: Mechanism Operating Mode

载荷状态	说 明 Remark			机柞	勾利用	等级 [Degree o	of utidiza	ation		
Load	ид нуј попнак	T _o	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T ₉
L₁一轻 L₁-Light	机构常受轻载荷,偶尔受最大载荷 Often use for light load, occationally heaviest load			M_1	M_2	M_3	M_4	M_5	M_6	M ₇	M_8
$L_2 - +$ L ₂ -Medium	机构常受中等载荷,较少受最大载荷 Often use for medium load, little time heaviest load		M_1	M_2	M_3	M_4	M_5	M_6	M ₇	M_8	
L ₃ 一重 L ₃ -Heavy	机构常受较重载荷,也常受最大载荷 Often use for heavy load, sometime heaviest load	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8		
L ₄ 一特重 L ₄ -Exera heavy	机构常受最大载荷 Often use for Iheaviest load	M_2	M_3	M_4	M_5	M_6	M ₇	M_8			

6) 表 30 ø, 的计算式 Table 30: Calculation of ø,

起重机类别 Kind of lifting equipment	ø₂的计算式 Calculation of ø₂	适用的例子 Example
1	1+0.17V	作安装用的、使用轻闲的臂架起重机 Boom Crane for in stallation, light duty
2	1+0.35V	作安装用的、桥式起重机,作一般装卸用的吊钩式臂架起重机 Bridge crane for installation, Boom crane with hook for handing
3	1+0.07V	在机加工车间和仓库中用的吊钩式起重机,港口抓斗门座起重机 Elecric hook Crane for workshop or Warehouse, Harbour protal crare with grab bucket
4	1+1.00V	抓斗和电磁桥式起重机 Bridge crane with grab bucket and electric magnetic disk

V: 起重机提升速度(米/秒)

V: Lifting speed, m/sec

7) 表 31 轴伸中间部位允许的最大径向载荷

Table 31: Allowable max Overhomg load, radially (单位: KN)

名义中心距 aı Nominal centre distance a ₁	140	170	200	236	280	335	370	400	450	500	560	630	710	800
二级 2 stage	9	15	21	28	35	43	55	60	75	100	107	120	150	100
三级和四级 _{3,} 4 stage	9	15	28	35	48	55	64	93	120	150	170	200	240	260

9、选用方法

1) QJY2、QJYD2、QJYA2 减速器的承载
2) QJY3、QJY23、QJYD3、QJYA3、Q
合表 26 的规定。
3) QJY34、QJYD34、QJYA34 减速器的
4) 减速器输出轴中间部位最大允许径向载
的瞬时, 允许转矩为额定输出转矩的2
5) 若用在其它工作级别时,表 25、26、2
$PM_{5}=PM_{1} \times 1.12^{1.5}$
PM _s ——功率表中的数值,kw
i───工作级中1~8
PM, ——相对 M, 工作级别的功率
各种起重机工作级别的确定见表 28 和
6) 起重机减速器选型计算:
6.1) 起重机各机构疲劳计算基本载荷 M _{ma}
6.1.2) 起升和非平衡交幅机构;
$M_{max} = \omega_6 M_n$
式中: ø ₆ ——动载系数
M _n ——电机额定转矩 Nm
ø ₂ ——起升载荷系数(按表 30 ù
6.1.3) 运行和回转机构;
$M_{max} = \theta_8 M_n$
式中: ø ₈ ——刚性动载系数, ø ₈ =1.2-2.0
6.1.4) 平衡变幅机构;
M _{max} 取为该零件承受的等效变幅静阻力矩 力矩的 1.3~1.4 倍。
当最大工作载荷低于2.7倍的额定力矩时
的额定力矩时,应验算零件的静强度或者
6.2) 根据疲劳计算基本载荷和转送换算出
,
$PM_{i} = \frac{M_{max} \cdot n}{9550} \dots$
式中:M _{max} ——疲劳计算基本载荷,Nm;
n——减速器输入轴转速,r/min。

载能力(工作级别 M₅)应符合表 25 的规定。 QJTY23减速器的承载能力(工作级别M_s)应符

り承载能力(工作级别 M₅)应符合表 27 的规定。 载荷 (当 n=950r/min) 见表 31。 减速器输出轴端 2.7 倍。

27 值应按公式 B1 进行折算:

.....(B1)

^奚值,**kw** 表 29

ax°

.....(B2)(B3)

计算确定)

.....(B4)

.,其它零件取为电动机额定力矩传到该计算零件

可不进行静强度校核,当最大承载荷超过2.7倍 备选大一号机座的减速箱。 」功率值 PM。

.....(B5)

如果工作级别不是 M_{s} ,按公式(B1)进行换算至 M_{s} 工作级别时的功率 PM_{s} 。然后根据P及

公称传动比i选择减速器。

7) 选用举例:

选一台起重量为32^t,跨度为25.5M的桥式起重机,其起升机构的电机额定功率为60kw, 转速为 750r/min, 起升速度为 8m/min, 机构工作级别为 M, 减速器的传动比为 40, 要求第 Ⅲ种装配型式,齿轮轴端,立式安装。

电机的额定转矩

$$M_n = 9550 \times \frac{P}{n} = 9550 \times \frac{60}{750} = 764 \text{Nm}$$

起升载荷系数(按表 30)

$$ø_2 = 1 + 0.7 V = 1 + 0.7 \times \frac{8}{60} = 1.093$$

动载系数

$$\phi_6 = \frac{1}{2}(1 + \phi_2) = \frac{1 + 1.093}{2} = 1.047$$

疲劳计算基本载荷:

 $M_{max} = \phi_6 \cdot M_n = 1.047 \times 764.8 = 800 \text{ Nm}$ 相对于 M. 工作级别的功率:

$$FM_7 = \frac{M_{max} \cdot n_1}{9550} = \frac{800 \times 750}{9550} = 62.82 kw$$

再折算成 M_ 时的功率

PM_=PM_ × 1.12⁽⁷⁻⁵⁾=78.8kw

查表 26:

当 n=750r/min, i=40 时名义中心距 400,则高速轴许用功率 PM,为 79.1kw > 78.8kw 最 后选定; QJY3400-40 Ⅲ CL

Selection method:

- 1) Carrying capacity of type QJY2, QJYD2, QJYA2 decelerators (working grade M_s) should meet the requirement in table 25.
- 2) Carrying capacity of type QJY3, QJY23, QJYD3, QJYA3, QJTY23 decelerators (working grade M_c) should meet the requirement in table 26.
- 3) Carrying capacity of type QJY34, QJYD34, QJYA34 decelerators (working grade M_e) should meet the requirement in table 27.
- 4) See table 31 for the allowable maximum radial loading at the center of the output shaft of the output shaft of decelerator. The instantaneous allowable torque of output shaft end of decelerator is 2.7 times of the rated output torque.

5) When used in the other working grade, calculated according to the formula B $PM_{5}=PM_{1} \times 1.12^{1-5}$ PM₅ Value in the table i — Working grade 1 ~ 8 PM ----- Value of power rela See table 28 and table 29 for the calculat 6) Calculation for selecting hoist deceleration 6.1) Fatigue calculated basic load of each 6.1.2) Hoisting and non-equilibrium altern M_{max}=ø₆M_n In which: ø_e ----- dynamic loading fact $\phi_6 = \frac{1}{2} (1 + \phi_2)$ M_n — rated torque of moto ø____hoisting loading factor 6.1.3) Running and rotary mechanism $M_{max} = ø_8 M_n$ In which: ø₈ rigid dynamic loading 6.1.4) Equilibrium variable amplitude med moment of this part. base larger by one size should be selected. and transmission $\mathsf{PM}_{i} = \frac{\mathsf{M}_{\max} \cdot \mathsf{n}}{9550} \quad \dots \tag{B5}$ In which: M_{max} fatigue calculation basic loading, Nm; n — input shaft rotating speed of decelerator, r/min

If the working grade is not M_{e} , convert to the value of power PM_e at working grade of M_s according to the formula B1. And then select decelerator based on P and nominal transmission ratio i.

TAILONG MACHINERY

the value in the table 25, 26, and 27 should be 1:
(B1) of power, kw
ative to the working grade M _i , kw
tion of working grade for various hoists. ator
h mechanism of the hoist Maxz o
nating amplitude mechanism
(B2)
or
(B3)
or, Nm
r (determined by the calculation with talbe 30)
(B4)
g factor, ø ₈ =1.2-2.0
chanism

M_{max} is the equivalent variable amplitude static resistance moment carried by the part. For other parts, it is 1.3 ~ 1.4 times of the motor rated moment that is transferred to the

If maximum working load is less than 2.7 times of the rated moment, the verification of static strength is not needed. If maximum loading exceeds 2.7 times of the rated moment, the static strength of the part should be verified or the decelerator with the

6.2) Convert to the value of power PM, according to the fatigue-calculated basic loading

7) Example of selection

Select a bridge crane with hoisting capacity of 32^t , span of 25.5m. The rated motor power of the lifting mechanism is 60 kw, rotating speed is 750r/min, lifting speed is 8m/min, mechamism working grade is M_7 , decelerator transmission ratio is 40, with installation method III, gear shaft end, and vertical installation required.

Rated torque of motor

$$M_n = 9550 \times \frac{P}{n} = 9550 \times \frac{60}{750} = 764 \text{Nm}$$

Lift loading factor (see table 30)

$$ø_2 = 1 + 0.7 V = 1 + 0.7 \times \frac{8}{60} = 1.093$$

Dynamic load factor

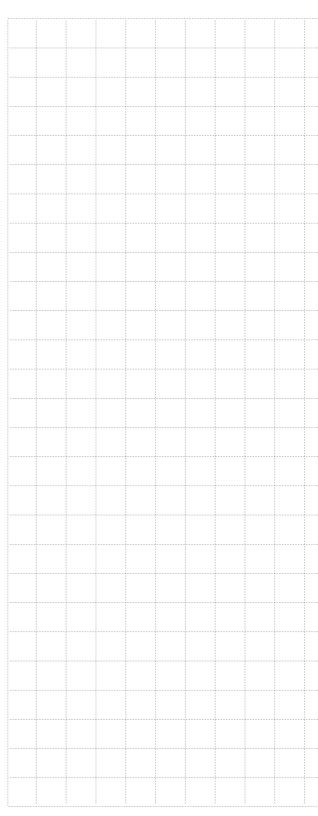
$$a_6 = \frac{1}{2}(1 + a_2) = \frac{1 + 1.093}{2} = 1.047$$

Fatigue-calculated basic loading

$$M_{max} = \phi_6 \cdot M_p = 1.047 \times 764.8 = 800 \text{Nm}$$

Power at working grade M₇

$$FM_7 = \frac{M_{max} \cdot n_1}{9550} = \frac{800 \times 750}{9550} = 62.82 kw$$


Convert to the power at working grade M₅

 $PM_{5}=PM_{1} \times 1.12^{(7-5)}=78.8$ kw

Check table 26:

When n=750r/min, i=40, nominal center distance is 400, the allowable power of high-speed shaft is 79.1kw > 78.8kw, so the selection is QJY3400-40 III CL

本厂拥有对本说明书的解释权,若有疑问请与本厂技术部门联系。一般每年一版,选用时请以最新版本为准。 The manufacturer has the right to interpret this instruction book, and any questions may refer to our technical department. This instruction book is updated every year, so the latest edition should be identified for reference.

TAILONG MACHINERY